Genetic structure in a dynamic baboon hybrid zone corroborates behavioural observations in a hybrid population

Molecular Ecology - Tập 21 Số 3 - Trang 715-731 - 2012
Marie Charpentier1, Michaël C. Fontaine2,3, E. CHEREL1, Julien P. Renoult4, Todd M. Jenkins1, Laure Benoit1,5, N. BARTHÈS1, Susan C. Alberts6,7, Jenny Tung8
1CEFE-CNRS UMR 5175, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
2Ecoanthropology and Ethnobiology UMR 5145 CNRS-MNHN-Université Paris, 7 Musée de l’Homme, 75016 Paris cedex, France
3Ecologie, Systématique et Evolution, Université Paris-Sud, and CNRS F-91405 Orsay Cedex, France
4Department of Evolutionary Biology and Animal Ecology, Faculty of Biology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany
5CIRAD, UMR 101, Avenue Agropolis, 34398 Montpellier Cedex 5, France
6Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
7Institute of Primate Research, National Museums of Kenya, PO Box 24481, Nairobi, Kenya
8Department of Human Genetics, University of Chicago, 920 E 58th St, Chicago, IL 60637, USA

Tóm tắt

AbstractBehaviour and genetic structure are intimately related: mating patterns and patterns of movement between groups or populations influence the movement of genetic variation across the landscape and from one generation to the next. In hybrid zones, the behaviour of the hybridizing taxa can also impact the incidence and outcome of hybridization events. Hybridization between yellow baboons and anubis baboons has been well documented in the Amboseli basin of Kenya, where more anubis‐like individuals tend to experience maturational and reproductive advantages. However, it is unknown whether these advantages are reflected in the genetic structure of populations surrounding this area. Here, we used microsatellite genotype data to evaluate the structure and composition of baboon populations in southern Kenya. Our results indicate that, unlike for mitochondrial DNA, microsatellite‐based measures of genetic structure concord with phenotypically based taxonomic distinctions and that the currently active hybrid zone is relatively narrow. Isolation with migration analysis revealed asymmetric gene flow in this region from anubis populations into yellow populations, in support of the anubis‐biased phenotypic advantages observed in Amboseli. Populations that are primarily yellow but that receive anubis gene flow exhibit higher levels of genetic diversity than yellow populations far from the introgression front. Our results support previous work that indicates a long history of hybridization and introgression among East African baboons. Specifically, it suggests that anubis baboons are in the process of gradual range expansion into the range of yellow baboons, a pattern potentially explained by behavioural and life history advantages that correlate with anubis ancestry.

Từ khóa


Tài liệu tham khảo

10.1016/j.jhevol.2006.07.009

10.1002/ajp.1

10.1016/j.anbehav.2006.05.001

Altmann SA, 1970, Baboon Ecology

Arnold ML, 1997, Natural Hybridization and Evolution, 10.1093/oso/9780195099744.001.0001

10.1016/j.zool.2006.03.006

10.1038/341497a0

10.1146/annurev.es.16.110185.000553

10.1093/genetics/162.4.2025

10.1371/journal.pgen.0030066

10.1007/978-0-387-33674-9_3

Bergman TJ, 2003, Sexual Selection and Primates: New Insights and Directions, 500

10.1002/ajp.20467

10.1006/hbeh.1999.1522

10.1093/jhered/esn093

10.1038/35082064

10.1086/301869

10.1038/nature01866

10.1111/j.1471-8286.2005.01002.x

10.1038/sj.hdy.6800997

10.1111/j.1365-294X.2008.03724.x

10.1093/genetics/127.2.437

10.1186/1471-2148-10-25

10.1016/j.tree.2010.04.001

10.1093/molbev/msp106

10.1111/j.1365-294X.2004.02177.x

10.1016/S0168-9525(00)02139-9

Estoup A, 1998, Advances in Molecular Ecology, 55

10.1046/j.1365-294X.2002.01576.x

10.1111/j.1365-294X.2005.02553.x

10.1086/283751

10.1111/j.1755-0998.2010.02868.x

10.1037/0735-7036.98.1.45

10.1146/annurev.ecolsys.34.011802.132421

10.1093/oxfordjournals.jhered.a111627

GoudetJ(2001)FSTAT a program to estimate and test gene diversities and fixation indices (version 2.9.3 2001). Available fromhttp://www.unil.ch/izea/softwares/fstat.html.

10.1126/science.1188021

Harrison RG, 1990, Hybrid zones: windows on evolutionary process, Oxford Survey in Evolutionary Biology, 7, 69

10.1002/evan.10121

10.1093/molbev/msp298

10.1093/molbev/msp296

10.1534/genetics.103.024182

Holekamp KE, 2011, Society, demography and genetic structure in the spotted hyena, Molecular Ecology

10.1002/ajpa.20720

10.1073/pnas.89.13.5981

10.1016/j.tpb.2007.01.004

10.1007/978-1-4899-3745-2_4

10.1002/ajpa.10021

10.1002/ajp.20896

10.1093/bioinformatics/btn129

10.1002/ajpa.21209

Kerth G, 2011, Causes and consequences of living in closed societies: lessons from a long‐term socio‐genetic study on Bechstein’s bats, Molecular Ecology

10.1093/molbev/msr033

Kingdon J, 1971, East African Mammals: An Atlas of Evolution in Africa

Maples W, 1967, The Baboon in Medical Research, 13

10.1038/nature04738

10.1002/ajpa.10340

10.1016/j.tree.2008.10.011

10.1038/ng711

10.1126/science.1146035

10.1002/ajpa.1330710309

10.1111/j.1365-294X.2004.02396.x

Pusey AE, 1987, Primate Societies, 250

R Development Core Team, 2011, R: A Language and Environment for Statistical Computing

10.1038/nature08365

10.1038/nature09710

10.1002/ajp.1350270404

Ribeiro AM, 2011, Microgeographic socio‐genetic structure of an African cooperative breeding passerine revealed: integrating behavioural and genetic data, Molecular Ecology

10.1007/BF02692314

10.1002/ajp.1350110303

10.1098/rspb.2004.2737

10.1038/nature07285

10.1111/j.1365-294X.2009.04212.x

10.1016/0169-5347(96)20050-3

10.1093/molbev/msp025

10.1093/bioinformatics/btn478

10.2307/1940795

10.1111/j.1365-294X.2008.03723.x

10.1038/nature08149

10.1093/genetics/160.3.1203

10.1111/j.1755-0998.2010.02885.x

10.1111/j.1558-5646.1984.tb05657.x

10.1038/ng1428

10.1016/j.ympev.2003.12.014

10.1016/j.gde.2006.10.004

10.1016/j.zoolgart.2008.05.002

10.1186/1471-2148-9-83