Additive Schwarz algorithms for parabolic convection-diffusion equations

Springer Science and Business Media LLC - Tập 60 - Trang 41-61 - 1991
Xiao-Chuan Cai1
1Department of Mathematics, University of Kentucky, Lexington, USA

Tóm tắt

In this paper, we consider the solution of linear systems of algebraic equations that arise from parabolic finite element problems. We introduce three additive Schwarz type domain decomposition methods for general, not necessarily selfadjoint, linear, second order, parabolic partial differential equations and also study the convergence rates of these algorithms. The resulting preconditioned linear system of equations is solved by the generalized minimal residual method. Numerical results are also reported.

Tài liệu tham khảo

Babuška, I. (1972): The mathematical foundations of the finite element method, with applications to partial differential equations, A.D. Aziz ed. Academic Press, New York London Bjørstad, P.E., Widlund, O.B. (1986): Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal.23, 1093–1120 Bramble, J.H. (1966): A second order finite difference analogue of the first biharmonic boundary value problem. Numer. Math.9, 236–249 Bramble, J.H., Pasciak, J.E., Schatz, A.H. (1986): The construction of preconditioners for elliptic problems by substructuring, I. Math. Comput.47, 103–134 Bramble, J.H., Pasciak, J.E., Schatz, A.H. (1987): The construction of preconditioners for elliptic problems by substructuring, II. Math. Comput.49, 1–16 Bramble, J.H., Pasciak, J.E., Schatz, A.H. (1988): The construction of preconditioners for elliptic problems by substructuring, III. Math. Comput.51, 415–430 Bramble, J.H., Pasciak, J.E., Shatz, A.H. (1989): The construction of preconditoners for elliptic problems by substructuring, IV. Math. Comput.53, 1–24 Cai, X.-C. (1989): Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic partial differential equations. Ph.D. thesis, Courant Institute Cai, X.-C. (1990): An additive Schwarz algorithm for nonselfadjoint elliptic equations. In: T. Chan, R. Glowinski, J. Périaux, O. Widlund, eds., Third International, Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia Cai, X.-C., Widlund, O.B. (1990): Multiplicative Schwarz algorithms for nonsymmetric and indefinite elliptic and parabolic problems. Tech. Rep. CCS-90-7, Center for Comput. Sci., Univ. of Kentucky Dawson, C., Du, Q. Dupont, T.F., (1989): A finite difference domain decomposition algorithm for numerical solution of the heat equation. Tech. Rep., 89–09, Univ. of Chicago Dryja, M. (1989): An additive Schwarz algorithm for two-and three-dimensional finite element elliptic problems. In: T. Chan, R. Glowinski, G.A. Meurant, J. Périaux, O. Widlund, eds., Domain Decomposition Methods for Partial Differential Equations II. Philadelphia Dryja, M., Widlund, O.B. (1987): An additive variant of the Schwarz alternating method for the case of many subregions. Tech. Rep. 339, Dept. of Comp. Sci., Courant Institute Dryja, M., Widlund, O.B. (1989): Some domain decomposition algorithms for elliptic problems. In: L. Hayes, D. Kincaid, eds., Iterative Methods for Large Linear Systems. Academic Press, San Diego California Dryja, M., Widlund, O.B. (1990): Towards a unified theory of domain decomposition algorithms for elliptic problems. In: T. Chan, R. Glowinski, J. Périaux, O. Widlund, eds., Third International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia Eisenstat, S.C., Elman, H.C., Schultz, M.H. (1983): Variational iterative methods for nonsymmetric system of linear equations. SIAM J. Numer. Anal.20, 345–357 Ewing, R.E., Lazarov, R.D., Pasciak, J.E., Vassilevski, P.S. (1989): Finite element methods for parabolic problems with time steps variable in space. Tech. Rep. # 1989-05, Inst. for Sci. Comp., Univ. of Wyoming Grisvard, P. (1985): Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA Johnson, C. (1987): Numerical Solution of Partial Differential Equation by the Finite Element Method. Cambridge University Press, Cambridge Kuznetsov, Yu.A. (1989): Domain decomposition methods for time-dependent problems. Preprint Lions, P.L. (1988): On the Schwarz alternating method. I. In: R. Glowinski, G. H. Golub, G. A. Meurant, J. Périaux, eds., Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia Nečas, J. (1964): Sur la Coercivité des Formes Sesquilinéaires, Elliptiques. Rev. Roumaine Math. Pures Appl.9, 47–69 Saad, Y., Schultz, M.H. (1986): GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp.7, 865–869 Yserentant, H. (1986): On the multi-level splitting of finite element spaces. Numer Math.49, 379–412