Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases

American Association for the Advancement of Science (AAAS) - Tập 366 Số 6461 - Trang 109-115 - 2019
Yasushi Kondo1,2, Jana Ognjenović3, Saikat Banerjee4, Deepti Karandur1,2,5, Alan Merk3, Kayla Kulhanek4, Kathryn Wong1,2, Jeroen P. Roose4, Sriram Subramaniam6, John Kuriyan1,7,2,8,5
1California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
2Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
3Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20814, USA.
4Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143 USA
5Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720 USA
6University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
7Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
8Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Tóm tắt

The yin and yang of Raf inhibition

Many human melanomas contain an overactive form of Raf kinase (B-Raf). Inhibitors are effective against the mutant B-Raf, but, paradoxically, they activate wild-type B-Raf, limiting their therapeutic potential. Kondo et al. determined the structure of a phosphorylated B-Raf dimer in complex with the scaffold protein 14-3-3 by cryo–electron microscopy. Although both kinases are in the active conformation, one is blocked by the C-terminal tail of the other. This configuration inhibits one active site but also stabilizes the dimer in the active conformation. Understanding this mechanism provides a framework for development of inhibitors that do not activate wild-type Raf.

Science , this issue p. 109

Từ khóa


Tài liệu tham khảo

10.1038/nrm3979

10.1038/364308a0

10.1016/0092-8674(93)90307-C

10.1073/pnas.90.13.6213

10.1126/science.8503013

10.1126/science.8085158

10.1016/S0021-9258(19)85336-X

10.1126/science.7939632

10.1038/nature00766

10.1056/NEJMoa1002011

10.1021/acs.jmedchem.7b01306

10.1016/j.cell.2009.12.040

10.1038/nature08833

10.1038/nature08902

10.1128/MCB.00057-14

10.1038/nsmb.2924

10.1038/nature08314

10.1016/j.molcel.2011.03.004

10.1016/j.cell.2006.05.013

10.1016/S0092-8674(04)00215-6

10.1158/0008-5472.CAN-06-2554

10.1016/j.ccr.2014.07.007

10.1016/S0092-8674(00)80487-0

10.1016/B978-0-12-397918-6.00002-1

10.1016/S0092-8674(85)80053-2

10.1126/scitranslmed.3000758

10.1038/sj.onc.1209640

10.1016/j.cellsig.2009.07.001

10.1128/MCB.00569-09

10.1016/j.tibs.2010.09.006

10.1016/j.cell.2013.07.046

10.1128/MCB.00943-14

10.1038/382325a0

10.1002/j.1460-2075.1996.tb01072.x

10.1038/nature21702

10.1016/S0092-8674(03)00194-6

10.1021/jacs.5b13528

10.1016/j.str.2014.12.017

10.1074/jbc.M804795200

10.7554/eLife.42166

10.1038/nmeth.4193

10.1016/j.jsb.2015.08.008

10.7554/eLife.11182

10.1128/MCB.9.2.639

10.1074/jbc.M501185200

10.1200/jco.2010.28.15_suppl.8503

10.1021/cb4003464

10.1073/pnas.1516631113

10.1107/S0907444910007493

10.1107/S0907444909052925

10.1002/pro.3235

10.1107/S0907444993000423

10.1063/1.445869

10.1016/0263-7855(96)00018-5

10.1002/jcc.20289

10.1038/nmeth.4067

10.1063/1.464397

10.1063/1.467468

10.1063/1.470648

10.1002/jcc.20290

10.1002/jcc.20084

10.1093/bioinformatics/btp033