Stabilizing air dampers for hovering aerial robotics: design, insect-scale flight tests, and scaling

Autonomous Robots - Tập 41 Số 8 - Trang 1555-1573 - 2017
Fuller, Sawyer B.1,2,3, Teoh, Zhi Ern2,3, Chirarattananon, Pakpong4, Pérez-Arancibia, Néstor O.5, Greenberg, Jack6, Wood, Robert J.2,3
1Department of Mechanical Engineering, University of Washington, Seattle, USA
2School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
3The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
4Department of Mechanical and Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong
5Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, USA
6Google Inc., Mountain View, USA

Tóm tắt

Most hovering aircraft such as helicopters and animal-inspired flapping-wing flyers are dynamically unstable in flight, quickly tumbling in the absence of feedback control. The addition of feedback loops can stabilize, but at the cost of additional sensing and actuation components. This can add expense, weight, and complexity. An alternative to feedback is the use of passive mechanisms such as aerodynamic drag to stabilize attitude. Previous work has suggested that small aircraft can be stabilized by adding air dampers above and below the center of mass. We present flight tests of an insect-scale robot operating under this principle. When controlled to a constant altitude, it remains stably upright while undergoing cyclic attitude oscillations. To characterize these oscillations, we present a nonlinear analytic model derived from first principles that reproduces the observed behavior. Using numerical simulation, we analyze how changing damper size, position, mass, and midpoint offset affect these oscillations, building on previous work that considered only a single configuration. Our results indicate that only by increasing damper size can lateral oscillation amplitude be significantly reduced, at the cost of increased damper mass. Additionally, we show that as scale diminishes, the damper size must get relatively larger. This suggests that smaller damper-equipped robots must operate in low-wind areas or in boundary-layer flow near surfaces.

Tài liệu tham khảo

citation_title=Airplane stability and control. A history of the technologies that made aviation possible; citation_publication_date=2002; citation_id=CR1; citation_author=MJ Abzug; citation_author=EE Larrabee; citation_publisher=Cambridge University Press Åström, K. J., & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers. Princeton: Princeton University Press. citation_title=Formulas for dynamics, acoustics and vibration; citation_publication_date=2015; citation_id=CR3; citation_author=RD Blevins; citation_publisher=Wiley Chirarattananon, P. C., & Wood, R. J. (2013). Identification of flight aerodynamics for flapping-wing microrobots. In 2013 IEEE international conference on robotics and automation (ICRA). citation_journal_title=International Journal of Micro Air Vehicles; citation_title=Design, aerodynamics, and vision-based control of the delfly; citation_author=G Croon, K Clercq, R Ruijsink, B Remes, C Wagter; citation_volume=1; citation_issue=2; citation_publication_date=2009; citation_pages=71-97; citation_doi=10.1260/175682909789498288; citation_id=CR5 citation_journal_title=Philosophical Transactions of the Royal Society of London B; citation_title=Haltere-mediated equilibrium reflexes of the fruit fly, drosophila melanogaster; citation_author=MH Dickinson; citation_volume=354; citation_publication_date=1999; citation_pages=903-916; citation_doi=10.1098/rstb.1999.0442; citation_id=CR6 citation_journal_title=Journal of Experimental Biology; citation_title=The wake dynamics and flight forces of the fruit fly drosophila melanogaster; citation_author=MH Dickinson, KG Götz; citation_volume=199; citation_issue=9; citation_publication_date=1996; citation_pages=2085-2104; citation_id=CR7 citation_journal_title=Science; citation_title=Wing rotation and the aerodynamic basis of insect flight; citation_author=MH Dickinson, FO Lehmann, SP Sane; citation_volume=284; citation_issue=5422; citation_publication_date=1999; citation_pages=1954-1960; citation_doi=10.1126/science.284.5422.1954; citation_id=CR8 citation_title=The biomechanics of insect flight: Form, function, evolution; citation_publication_date=2002; citation_id=CR9; citation_author=R Dudley; citation_publisher=Princeton University Press citation_journal_title=Journal of the Royal Society Interface; citation_title=A new twist on gyroscopic sensing: Body rotations lead to torsion in flapping, flexing insect wings; citation_author=A Eberle, B Dickerson, PG Reinhall, T Daniel; citation_volume=12; citation_issue=104; citation_publication_date=2015; citation_pages=20141,088; citation_doi=10.1098/rsif.2014.1088; citation_id=CR10 citation_journal_title=Philosophical Transactions of the Royal Society of London B, Biological Sciences; citation_title=The aerodynamics of hovering insect flight. ii. Morphological parameters; citation_author=CP Ellington; citation_volume=305; citation_issue=1122; citation_publication_date=1984; citation_pages=17-40; citation_doi=10.1098/rstb.1984.0050; citation_id=CR11 citation_journal_title=Nature; citation_title=Leading-edge vortices in insect flight; citation_author=CP Ellington, C Berg, AP Willmott, AL Thomas; citation_volume=384; citation_issue=19; citation_publication_date=1996; citation_pages=626-630; citation_doi=10.1038/384626a0; citation_id=CR12 Fearing, R., Chiang, K., Dickinson, M., Pick, D., Sitti, M., & Yan, J. (2000). Wing transmission for a micromechanical flying insect. In IEEE international conference on robotics and automation (ICRA) vol. 2, (pp. 1509–1516). Finio, B. M., Pérez-Arancibia, N. O., & Wood, R. J. (2011). System identification and linear time-invariant modeling of an insect-sized flapping-wing micro air vehicle. In 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS). Fuller, S. B., Helbling, E. F., Chirarattananon, P., & Wood, R. J. (2014a). Using aMEMS gyroscope to stabilize the attitude of a fly-sized hovering robots. In 2014 International conference on micro air vehicle (IMAV), Delft, The Netherlands. Fuller, S. B., Karpelson, M., Censi, A., Ma, K. Y., & Wood, R. J. (2014b). Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. Jouranl of the Royal Society Interface. doi: 10.1098/rsif.2014.0281 . citation_journal_title=Physical Review Letters; citation_title=Collective flow enhancement by tandem flapping wings; citation_author=N Gravish, JM Peters, SA Combes, RJ Wood; citation_volume=115; citation_issue=18; citation_publication_date=2015; citation_pages=188101; citation_doi=10.1103/PhysRevLett.115.188101; citation_id=CR17 Helbling, E. F., Fuller, S. B., & Wood, R. J. (2014). Pitch and yaw control of a robotic insect using an onboard magnetometer. In 2014 IEEE international conference on robotics and automation (ICRA). citation_title=Fluid-dynamic drag: Practical information on aerodynamic drag and hydrodynamic resistance; citation_publication_date=1965; citation_id=CR19; citation_author=SF Hoerner; citation_publisher=Hoerner Fluid Dynamics Keennon, M., Klingebiel, K., Won, H., & Andriukov, A. (2012). Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In AIAA aerospace sciences meeting, AIAA, Reston, VA (pp. 1–24). doi: 10.2514/6.2012-588 . Kroo, I., & Kunz, P. (2000). Development of the mesicopter: A miniature autonomous rotorcraft. In American helicopter society (AHS) vertical lift aircraft design conference, San Francisco, CA. Ma, K. Y., Felton, S. M., & Wood, R. J. (2012). Design, fabrication, and modeling of the splitactuator microrobotic bee. In 2012 IEEE international conference on robotics and automation (ICRA), St. Paul, MN (pp. 1133–1140). citation_journal_title=Science; citation_title=Controlled flight of a biologically inspired, insect-scale robot; citation_author=KY Ma, P Chirarattananon, SB Fuller, R Wood; citation_volume=340; citation_issue=6132; citation_publication_date=2013; citation_pages=603-607; citation_doi=10.1126/science.1231806; citation_id=CR23 citation_journal_title=Proceedings of the National Academy of Sciences; citation_title=The gradient-sensing mechanism in bacterial chemotaxis; citation_author=RM Macnab, D Koshland; citation_volume=69; citation_issue=9; citation_publication_date=1972; citation_pages=2509-2512; citation_doi=10.1073/pnas.69.9.2509; citation_id=CR24 Pérez-Arancibia, N. O., Ma, K. Y., Galloway, K. C., Greenberg, J. D., & Wood, R. J. (2011). First controlled vertical flight of a biologically inspired microrobot. Bioinspiration and Biomimetics, 6(3), 036009. doi: 10.1088/1748-3182/6/3/036009 . citation_journal_title=Physical Review Letters; citation_title=Flapping wing flight can save aerodynamic power compared to steady flight; citation_author=U Pesavento, Z Wang; citation_volume=103; citation_issue=11; citation_publication_date=2009; citation_pages=118,102; citation_doi=10.1103/PhysRevLett.103.118102; citation_id=CR26 citation_journal_title=Philosophical Transactions of the Royal Society of London Series B, Biological Sciences; citation_title=The gyroscopic mechanism of the halteres of diptera; citation_author=JWS Pringle; citation_volume=233; citation_issue=602; citation_publication_date=1948; citation_pages=347-384; citation_doi=10.1098/rstb.1948.0007; citation_id=CR27 citation_journal_title=Artificial Life; citation_title=Untethered hovering flapping flight of a 3d-printed mechanical insect; citation_author=C Richter, H Lipson; citation_volume=17; citation_issue=2; citation_publication_date=2011; citation_pages=73-86; citation_doi=10.1162/artl_a_00020; citation_id=CR28 citation_journal_title=Proceedings of the National Academy of Sciences; citation_title=Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles; citation_author=L Ristroph, AJ Bergou, G Ristroph, K Coumes, GJ Berman, J Guckenheimer, ZJ Wang, I Cohen; citation_volume=107; citation_issue=11; citation_publication_date=2010; citation_pages=4820-4824; citation_doi=10.1073/pnas.1000615107; citation_id=CR29 Ristroph, L., Ristroph, G., Morozova, S., Bergou, A. J., Chang, S., Guckenheimer, J., et al. (2013). Active and passive stabilization of body pitch in insect flight. Journal of the Royal Society Interface. doi: 10.1098/rsif.2013.0237 . citation_journal_title=The Journal of Experimental Biology; citation_title=The control of flight force by a flapping wing: Lift and drag production; citation_author=SP Sane, MH Dickinson; citation_volume=204; citation_publication_date=2001; citation_pages=2607-2626; citation_id=CR31 Sane, S. P., Dieudonné, A., Willis, M. A., & Daniel, T. L. (2007). Antennal mechanosensors mediate flight control in moths. Science, 315(5813), 863–866. doi: 10.1126/science.1133598 . citation_journal_title=Autonomous Robots; citation_title=Passive torque regulation in an underactuated flapping wing robotic insect; citation_author=P Sreetharan, RJ Wood; citation_volume=31; citation_issue=2–3; citation_publication_date=2011; citation_pages=225-234; citation_doi=10.1007/s10514-011-9242-3; citation_id=CR33 citation_journal_title=Bioinspiration & Biomimetics; citation_title=Forward flight of swallowtail butterfly with simple flapping motion; citation_author=H Tanaka, I Shimoyama; citation_volume=5; citation_issue=2; citation_publication_date=2010; citation_pages=026003; citation_doi=10.1088/1748-3182/5/2/026003; citation_id=CR34 Teoh, Z. E., Fuller, S. B., Chirarattananon, P. C., Pérez-Arancibia, N. O., Greenberg, J. D., & Wood, R. J. (2012). A hovering flapping-wing microrobot with altitude control andpassive upright stability. In 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS), Vilamoura, Algarve, Portugal (pp. 3209–3216). citation_journal_title=Sensors and Actuators; citation_title=Microbots and micromechanical systems; citation_author=WSN Trimmer; citation_volume=19; citation_publication_date=1989; citation_pages=267-287; citation_doi=10.1016/0250-6874(89)87079-9; citation_id=CR36 citation_journal_title=Bioinspiration & Biomimetics; citation_title=From falling to flying: The path to powered flight of a robotic samara nano air vehicle; citation_author=E Ulrich, D Pines, JS Humbert; citation_volume=5; citation_issue=045; citation_publication_date=2010; citation_pages=009; citation_id=CR37 citation_journal_title=IEEE Robotics & Automation Magazine; citation_title=From insects to machines; citation_author=F Breugel, W Regan, H Lipson; citation_volume=15; citation_issue=4; citation_publication_date=2008; citation_pages=68-74; citation_doi=10.1109/MRA.2008.929923; citation_id=CR38 citation_journal_title=Journal of Experimental Biology; citation_title=Unsteady forces and flows in low reynolds number hovering flight: Two-dimensional computations versus robotic wing experiments; citation_author=ZJ Wang, JM Birch, MH Dickinson; citation_volume=207; citation_issue=3; citation_publication_date=2004; citation_pages=449-460; citation_doi=10.1242/jeb.00739; citation_id=CR39 citation_journal_title=Journal of Micromechanics and Microengineering; citation_title=Pop-up book mems; citation_author=J Whitney, P Sreetharan, K Ma, R Wood; citation_volume=21; citation_issue=11; citation_publication_date=2011; citation_pages=115021; citation_doi=10.1088/0960-1317/21/11/115021; citation_id=CR40 citation_journal_title=Journal of Comparative Physiology; citation_title=The functional organisation of locust ocelli; citation_author=M Wilson; citation_volume=124; citation_issue=4; citation_publication_date=1978; citation_pages=297-316; citation_doi=10.1007/BF00661380; citation_id=CR41 citation_journal_title=IEEE Transactions on Robotics; citation_title=The first takeoff of a biologically inspired at-scale robotic insect; citation_author=RJ Wood; citation_volume=24; citation_issue=2; citation_publication_date=2008; citation_pages=341-347; citation_doi=10.1109/TRO.2008.916997; citation_id=CR42 Wood, R. J., Avadhanula, S., Menon, M., & Fearing, R. S. (2003). Microrobotics using composite materials: The micromechanical flying insect thorax. In 2003 ieee international conference on robotics and automation (ICRA) (vol. 2 pp. 1842–1849). doi: 10.1109/ROBOT.2003.1241863 . citation_journal_title=Journal of Mechanical Design; citation_title=Microrobot design using fiber reinforced composites; citation_author=RJ Wood, S Avadhanula, R Sahai, E Steltz, RS Fearing; citation_volume=130; citation_publication_date=2008; citation_pages=052304; citation_doi=10.1115/1.2885509; citation_id=CR44 citation_journal_title=Journal of Aircraft; citation_title=Development and testing of the mentor flapping-wing micro air vehicle; citation_author=P Zdunich, D Bilyk, M MacMaster, D Loewen, J DeLaurier, R Kornbluh, T Low, S Stanford, D Holeman; citation_volume=44; citation_issue=5; citation_publication_date=2007; citation_pages=1701-1711; citation_doi=10.2514/1.28463; citation_id=CR45