Stromal striae: a new insight into corneal physiology and mechanics

Scientific Reports - Tập 7 Số 1
Kate Grieve1,2, Djida Ghoubay1,2, Cristina Georgeon1, Gaël Latour3, Amir Nahas4, Karsten Plamann5, Caroline Crotti5, Romain Bocheux4, Marie Borderie1, Thu-Mai Nguyen4, Felipe Andreiuolo1, Marie‐Claire Schanne‐Klein6, Vincent Borderie1,2
1CHNO - Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (Hôpital National des 15-20 28, rue de Charenton 75571 Paris cedex 12 - France)
2Institut de la Vision (17 Rue Moreau, 75012 Paris - France)
3IMNC (UMR_8165) - Imagerie et Modélisation en Neurobiologie et Cancérologie (Université Paris Sud - Bâtiment 440 15 rue Georges Clémenceau 91405 Orsay Cedex - France - France)
4IL - Institut Langevin - Ondes et Images (UMR7587) (ESPCI, 1 Rue Jussieu 75238 Paris Cedex 05 - France)
5LOA - Laboratoire d'optique appliquée (828, boulevard des Maréchaux 91762 Palaiseau Cedex - France)
6LOB - Laboratoire d'Optique et Biosciences (Ecole Polytechnique 91128 PALAISEAU Cedex - France)

Tóm tắt

Abstract

We uncover the significance of a previously unappreciated structural feature in corneal stroma, important to its biomechanics. Vogt striae are a known clinical indicator of keratoconus, and consist of dark, vertical lines crossing the corneal depth. However we detected stromal striae in most corneas, not only keratoconus. We observed striae with multiple imaging modalities in 82% of 118 human corneas, with pathology-specific differences. Striae generally depart from anchor points at Descemet’s membrane in the posterior stroma obliquely in a V-shape, whereas in keratoconus, striae depart vertically from posterior toward anterior stroma. Optical coherence tomography shear wave elastography showed discontinuity of rigidity, and second harmonic generation and scanning electron microscopies showed undulation of lamellae at striae locations. Striae visibility decreased beyond physiological pressure and increased beyond physiological hydration. Immunohistology revealed striae to predominantly contain collagen VI, lumican and keratocan. The role of these regions of collagen VI linking sets of lamellae may be to absorb increases in intraocular pressure and external shocks.

Từ khóa


Tài liệu tham khảo

Krachmer, J. H., Feder, R. S. & Belin, M. W. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol 28, 293–322 (1984).

Rabinowitz, Y. S. Keratoconus. Surv Ophthalmol 42, 297–319 (1998).

Sandali, O. et al. Fourier-domain optical coherence tomography imaging in keratoconus: a corneal structural classification. Ophthalmology 120, 2403–12 (2013).

Güngör, I. U., Beden, Ü. & Sönmez, B. Bilteral horizontal Vogt’s striae in keratoconus. Clin Ophthalmol 2(3), 653–5 (2008).

Mocan, M. C., Yilmaz, P. T., Irkec, M. & Orhan, M. The significance of Vogt’s striae in keratoconus as evaluated by in vivo confocal microscopy. Clin Experiment Ophthalmol. 36(4), 329–34 (2008).

Hollingsworth, J. G. & Efron, N. Observations of striae (Vogt striae) in keratoconus: a confocal microscopy study. Cornea 24, 162–6 (2005).

Efron, N. & Hollingsworth, J. G. New perspectives on keratoconus as revealed by corneal confocal microscopy. Clin Exp Optom 91, 34–55 (2008).

Huang, D. et al. Optical coherence tomography. Science 254, 1178–81 (1991).

Beaurepaire, E., Boccara, A. C., Lebec, M., Blanchot, L. & Saint-Jalmes, H. Full-field optical coherence microscopy. Opt Lett 23, 244–6 (1998).

Dubois, A., Vabre, L., Boccara, A. C. & Beaurepaire, E. High-resolution full-field optical coherence tomography with a Linnik microscope. Appl Opt 41, 805–12 (2002).

Ghouali, W. et al. Full-field optical coherence tomography of human donor and pathological corneas. Curr Eye Res 40, 526–34 (2015).

Grieve, K. et al. Three-dimensional structure of the mammalian limbal stem cell niche. Exp Eye Res 140, 75–84 (2015).

Grieve, K. et al. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography. Invest Ophthalmol Vis Sci 45, 4126–31 (2004).

Borderie, M. et al. New Parameters in Assessment of Human Donor Corneal Stroma. Acta Ophthalmol. 95, e297–e306 (2017).

Latour, G. et al. Full field optical coherence microscopy in ophthalmology in Handbook for Full-Field Optical Coherence Microscopy: Technology and Applications (ed. Dubois, A.) (CRC Press, 2016).

Grieve, K. et al. Imaging microscopic features of keratoconic corneal morphology. Cornea. 35(12), 1621–1630 (2016).

Latour, G., Gusachenko, I., Kowalczuk, L., Lamarre, I. & Schanne-Klein, M.-C. In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy. Biomed. Opt. Express 3, 1–15 (2012).

Elsheikh, A. et al. Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res 32(1), 11–9 (2007).

Bailey, A. J. Structure, function and ageing of the collagens of the eye. Eye (Lond). 1, 175–83 (1987).

Nakamura, M. et al. Type VI collagen bound to collagen fibrils by chondroitin/dermatan sulfate glycosaminoglycan in mouse corneal stroma. Jpn J Ophthalmol. 41, 71–6 (1997).

Liu, C. Y., Birk, D. E., Hassell, J. R., Kane, B. & Kao, W. W. Keratocan-deficient mice display alterations in corneal structure. J Biol Chem 278, 21672–7 (2003).

Meek, K. M., Quantock, A. J., Boote, C., Liu, C. Y. & Kao, W. W. An X-ray scattering investigation of corneal structure in keratocan-deficient mice. Matrix Biol 22, 467–75 (2003).

Quantock, A. J., Meek, K. M. & Chakravarti, S. An x-ray diffraction investigation of corneal structure in lumican-deficient mice. Invest Ophthalmol Vis Sci 42, 1750–6 (2001).

Hassell, J. R. & Birk, D. E. The molecular basis of corneal transparency. Exp Eye Res 91, 326–35 (2010).

Hedbys, B. O. & Mishima, S. The thickness-hydration relationship of the cornea. Exp Eye Res 5, 221–8 (1966).

Maurice, D. M. The structure and transparency of the cornea. J Physiol 136, 263–286 (1957).

Ruberti, J. W., Roy, A. S. & Roberts, C. J. Corneal biomechanics and biomaterials. Annu Rev Biomed Eng 13, 269–95 (2011).

Komai, Y. & Ushiki, T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32, 2244–58 (1991).

Benoit, A., Latour, G., Schanne-Klein, M.-C. & Allain, J.-M. Simultaneous microstructural and mechanical characteristics of human corneas at increasing pressure. J Mech Behav Biomed Mater 60, 93–105 (2016).

Asejczyk-Widlicka, M. & Pierscionek, B. K. The elasticity and rigidity of the outer coats of the eye. Br J Ophthalmol 92, 1415–8 (2008).

Ker, R. F. Mechanics of tendon, from an engineering perspective. Int J Fatigue 29, 1001–1009 (2007).

Hansen, K. A., Weiss, J. A. & Barton, J. K. Recruitment of tendon crimp with applied tensile strain. J Biomech Eng 124, 72–77 (2002).

Currey, J. Biomaterials: Sacrificial bonds heal bone. Nature 414, 699, https://doi.org/10.1038/414699a (2001).

Terai, N., Raiskup, F., Haustein, M., Pillunat, L. E. & Spoer, l. E. Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res 37, 553–62 (2012).

Kobayashi, A. S., Staberg, L. G. & Schlegel, W. A. Viscoelastic properties of human cornea. Exp Mech 13(12), 497–503 (1973).

Hanlon, S. D., Behzad, A. R., Sakai, L. Y. & Burns, A. R. Corneal stroma microfibrils. Exp Eye Res 132, 198–207 (2015).

Eppell, S. J., Smith, B. N., Kahn, H. & Ballarini, R. Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J Roy Soc Interface 3, 117–121 (2006).

Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Hierarchical Structure and Nanomechanics of Collagen Microfibrils from the Atomistic Scale Up. Nano Lett 11, 757–766 (2011).

Goh, K. L., Listrat, A. & Bechet, D. Hierarchical Mechanics of Connective Tissues: Integrating Insights from Nano to Macroscopic Studies. J Biomed Nanotechnol 10, 2464–2507 (2014).

Tanter, M., Touboul, D., Gennisson, J. L., Bercoff, J. & Fink, M. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans Med Imaging 28, 1881–93 (2009).

Glass, D. H., Roberts, C. J., Litsky, A. S. & Weber, P. A. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci 49(9), 3919–3926 (2008).

Saad, A., Lteif, Y., Azan, E. & Gatinel, D. Biomechanical properties of keratoconus suspect eyes. Invest Ophthalmol Vis Sci 51, 2912–6 (2010).

Zhang, L. et al. Second-generation corneal deformation signal waveform analysis in normal, forme fruste keratoconic, and manifest keratoconic corneas after statistical correction for potentially confounding factors. J Cataract Refract Surg 41, 2196–204 (2015).

Viswanathan, D., Kumar, N. L., Males, J. J. & Graham, S. L. Relationship of Structural Characteristics to Biomechanical Profile in Normal, Keratoconic, and Crosslinked Eyes. Cornea 34, 791–6 (2015).

Roberts, C. J. & Dupps, W. J. Jr. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg 40, 991–8 (2014).

Scarcelli, G., Besner, S., Pineda, R. & Yun, S. H. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci 55, 4490–5 (2014).

Fuentes, E. et al. Anatomic Predictive Factors of Acute Corneal Hydrops in Keratoconus: An Optical Coherence Tomography Study. Ophthalmol 122, 1653–9 (2015).

Ebneter, A., Wagels, B. & Zinkernagel, M. S. Non-invasive biometric assessment of ocular rigidity in glaucoma patients and controls. Eye (Lond) 23, 606–11 (2009).

Mehdizadeh, A., Hoseinzadeh, A. & Fazelzadeh, A. Central corneal thickness as a risk factor for glaucoma. Med Hypotheses 69, 1205–7 (2007).

Deol, M., Taylor, D. A. & Radcliffe, N. M. Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol 26, 96–102 (2015).

Heidelberg Engineering. Product Sheet HRTII. http://www.heidelbergengineering.com/us/products/hrt-glaucoma-module/cornea-module/ (2017).

Optovue. Product Sheet Optovue. http://optovue.com/products/rtvue/ (2017).

Nguyen, T. M. et al. Diffuse shear wave imaging: towards passive elastography using low-frame rate spectral-domain optical coherence tomography. J Biomed Opt 21(12), 126013 (2016).

Crotti, C. et al. Wavelength Optimization in Femtosecond Laser Corneal Surgery. Invest Ophthalmol Vis Sci 54, 3340–3349 (2013).