The landscape of PreK-12 engineering online resources for teachers: global trends
Tóm tắt
The newly formed discipline of engineering education is addressing the need to (a) enhance STEM education for precollege students and (b) identify optimum ways to introduce engineering content starting, perhaps, from the early ages. Introducing engineering at the Prekindergarten through 12th grade (PreK-12) education level requires significant changes in teacher preparation and support. It highlights the need for developing developmentally appropriate content knowledge and pedagogical methods, thus revealing the challenges of preparing teachers to incorporate this type of knowledge base into their practice. Although professional development offered by universities, school districts, and other educational entities provides the primary source of formal learning tools for teachers, an increasing number of teachers also utilize other informal web-based resources regularly. This paper examines available PreK-12 engineering web resources offered by entities formally related to education in seven different languages, namely Arabic, Chinese (Mandarin), English, French, Greek, Korean, and Spanish. Findings showed how different educational systems designated different attention to the entry level ages when introducing engineering content. Differences in the terminology used to identify STEM resources for introducing these topics also became apparent. Similarities suggest that a large number of resources available on the web were originating in all researched languages. However, the developmental appropriateness and content validity of many of these resources remained questionable in many cases. In general, there was a plethora of isolated activities and lesson plans but significantly fewer complete engineering curricula available to teachers on the web. This study presents a comparative analysis of the international landscape of PreK-12 engineering education and provides guidelines and samples of state-of-the art resources in each language for teachers interested in introducing their students to engineering as a reliable starting point towards PreK-12 engineering information gathering.
Tài liệu tham khảo
American Association of Colleges for Teacher Education. (2013). The changing teacher preparation profession: a report from AACTE's professional educational data system (PEDS). http://blogs.edweek.org/edweek/charterschoice/AACTE.pdf. Accessed March 22 2014.
Bagiati, A. (2011). Early engineering: a developmentally appropriate curriculum for young children (Dissertation). West Lafayette: Purdue University.
Bagiati, A, & Evangelou, D. (2008). An examination of web-based P-12 engineering curricula: issues of pedagogical and engineering content fidelity. In Proceedings of the Research in Engineering Education Symposium.
Bagiati, A, Evangelou, D (in press (a)). Engineering curriculum in the preschool classroom: the teacher's experience. European Early Childhood Education Research Journal, 23(1).
Bagiati, A, Evangelou, D, (in press (b)) Practicing engineering while building with blocks: identifying engineering thinking. European Early Childhood Education Research Journal, 24(1).
Bagiati, A, Yoon, SY, Evangelou, D, Kaloustian, G, Cekic, O, Zhu, J Magana, AJ (2011). Engineering in early education: A multicultural comparison of web resources. Proceedings of the American Society for Engineering Education Annual Conference, Vancouver, BC, Canada.
Bagiati, A, Yoon, SY, Evangelou, D, & Ngambeki, I. (2010). Engineering curricula in early education: Describing the landscape of open resources. Early Childhood Research & Practice, 12(2), 1–15.
Bairaktarova, D, Evangelou, D, Bagiati, A, & Dobbs-Oates, J (2012). The role of classroom artifacts in developmental engineering. In Proceedings of the American Society for Engineering Education Annual Conference, San Antonio, TX.
Becker, SB. (2010). Why don't young people want to become engineers? Rational reasons for disappointing decisions. European Journal of Engineering Education, 35(4), 349–366.
Borko, H, Whitcomb, J, & Liston, D. (2009). Wicked problems and other thoughts on issues of technology and teacher learning. Journal of Teacher Education, 60(1), 3–7.
Brophy, S & Evangelou, D (2007). Precursors to engineering thinking (PET). In Proceedings of the American Society for Engineering Education Annual Conference. Honolulu, Hawaii. June 24–27.
Brophy, S, Klein, S, Portsmore, M, & Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97(3), 369–387.
Bybee, RW. (2011). K-12 engineering education standards: opportunities and barriers. Technology and Engineering Teacher, 70(5), 21–29.
Campos, BP, Kallos, D, & Stephenson, J. (2000). Green paper on teacher education in Europe. Urnéa, Sweden: TNTEE.
Copple, C, & Bredekamp, S (Eds.). (2009). Developmentally appropriate practice in early childhood programs serving children from birth through age 8 (3rd ed.). Washington, DC: National Association for Education of Young Children.
Dimopoulos, C, Katzis, K, & Hawwash, K. (2011). Attracting students to engineering education studies: a survey of practices. Lisbon, Portugal: European Society for Engineering Education (SEFI).
Giordan, A. (2010). Nouveaux contenus, nouvelles pratiques, peut-on mutualiser les problèmes et les acquis? In A. Hasni, & J. Lebeaume (Éds). Nouveaux enjeux de l’éducation scientifique et technologique: visées, contenus, compétences et pratiques (pp. 17-49). Ottawa : Presses Universitaires.
Gounari, P. (2009). Rethinking critical literacy in the new information age. Critical Inquiry in Language Studies, 6(3), 148–175.
Graziano, WG, Habashi, MM, Evangelou, D, & Ngambeki, I. (2012). Orientations and motivations: are you a “people person”, a “thing person”, or both? Motivation and Emotion, 36(4), 465–477.
Hedtke, R, Kahlert, J, & Schwier, V. (2001). Service industry for teachers? Using the Internet to plan lessons. European journal of education, 36(2), 189–193.
Hsu, M-C, Purzer, S, & Cardella, ME. (2011). Elementary teachers' views about teaching design, engineering, and technology. Journal of Pre-College Engineering Education Research (J-PEER), 1(2), 31–39.
Johnstone, S. (2005). Open educational resources serve the world. Sharing educational resources over the Internet provides multiple benefits, from academic collaboration to economic development. Boulder, Colorado: EDUCAUSE Quarterly.
Jung, I. (2005). ICT-pedagogy integration in teacher training: application cases worldwide. Educational Technology & Society, 8(2), 94–101.
Katehi, L, Pearson, G, & Feder, M. (2009). The status and nature of K-12 engineering education in the United States. The Bridge, 3(3), 5–10.
Kim, KS, Hong, JH, Huh, CS, Moon, DY, Kim, MY, Lee, CH, Kim, KY, Choi, EK, & Kim, YM. (2013). A study on the reinforcement strategies of engineering education in elementary and secondary school [초중등 공학교육 강화방안 정책연구]. Daejeon, South Korea: Korea Ministry of Education, Science, and Technology [한국교육과학기술부], Korea Foundation for the Advancement of Science & Creativity [한국과학창의재단].
Kuenzi, JJ. (2008). CRS report for congress: science, technology, engineering, and mathematics (STEM) education: background, federal policy, and legislative action. Congressional Research Service, Library of Congress, RL33434, Washington, DC. Retrieved on December 30th 2014 from https://www.hsdl.org/?view&did=715973
Lebeaume, J. (2011). Integration of Science, Technology, Engineering and Mathematics: Is This Curricular Revolution Really Possible in France? Design and Technology Education, 16(1), 47–52.
Lock, JV. (2006). A new image: online communities to facilitate teacher professional development. Journal of Technology and Teacher Education, 14(4), 663–678.
Moore, TJ. (2010). Implementing K-12 engineering standards through STEM integration. In National Science Foundation (NSF) Faculty Early Career Development (CAREER) Program, Engineering Education Division, Award # 1055382.
National Research Council. (2009). Engineering in K-12 education: understanding the status and improving the prospects. Washington, DC: The National Academies Press.
Perrault, AM (2007). An exploratory study of biology teachers' online information seeking practices. School Library Media Research (pp. 10).
Pimienta, D, Prado, D, & Blanco, A. (2009). Twelve years of measuring linguistic diversity in the Internet: balance and perspectives. Paris: United Nations Educational, Scientific and Cultural Organization.
Punie, Y. (2012). Preface. In Joint Research Centre of the European Commission Innovating Learning: key elements for developing creative classroom in Europe (p. 1). Luxemburg: Publications Office of the European Union.
Recker, M. (2006). Perspectives on teachers as digital library users: consumers, contributors, and designers. D-Lib Magazine, 12(9), 2.
Recker, M, Dorward, J, & Nelson, LM. (2004). Discovery and use of online learning resources: case study findings. Journal of Educational Technology and Society, 7, 93–104.
Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 20, 20–26.
Shulman, LS. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.
Toombs, WE, & Tierney, WG. (1993). Curriculum definitions and reference points. Journal of Curriculum and Supervision, 8(3), 175–195. Retrieved from http://www.ascd.org/publications/jcs/spring1993/Curriculum-Definitions-and-Reference-Points.aspx.
Wang, H-H, Moore Tamara, J, Roehrig, GH, & Park, MS. (2011). STEM integration: teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1, 2.
Watt, HM, Richardson, PW, & Pietsch, J. (2007). Choosing to teach in the “STEM” disciplines: characteristics and motivations of science, ICT, and mathematics teachers. In mathematics: essential research, essential practice. In Proceedings of the 30th Annual Conference of the Mathematics Education Research Group of Australasia (2nd ed., pp. 795–804). Adelaide: MERGA.
Wiggins, G, & McTighe, J. (1997). Understanding by design. Alexandria, VA: Association for Supervision and Curriculum Development.
Wiggins, G, & McTighe, J. (2005). Understanding by design (2nd ed.). San Francisco, CA: Pearson Education.
Yaşar, Ş, Baker, D, Robinson-Kurpius, S, Krause, S, & Roberts, C. (2006). Development of a survey to assess K-12 teachers' perceptions of engineers and familiarity with teaching design, engineering, and technology. Journal of Engineering Education, 95(3), 205–216.