High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media
Tóm tắt
Without the need of contrast media, diffusion-weighted imaging (DWI) has shown great promise for accurate detection of lipid-rich necrotic core (LRNC), a well-known feature of vulnerable plaques. However, limited resolution and poor image quality in vivo with conventional single-shot diffusion-weighted echo planar imaging (SS-DWEPI) has hindered its clinical application. The aim of this work is to develop a diffusion-prepared turbo-spin-echo (DP-TSE) technique for carotid plaque characterization with 3D high resolution and improved image quality. Unlike SS-DWEPI where the diffusion encoding is integrated in the EPI framework, DP-TSE uses a diffusion encoding module separated from the TSE framework, allowing for segmented acquisition without the sensitivity to phase errors. The interleaved, motion-compensated sequence was designed to enable 3D black-blood DWI of carotid arteries with sub-millimeter resolution. The sequence was tested on 12 healthy subjects and compared with SS-DWEPI for image quality, vessel wall visibility, and vessel wall thickness measurements. A pilot study was performed on 6 patients with carotid plaques using this sequence and compared with conventional contrast-enhanced multi-contrast 2D TSE as the reference. DP-TSE demonstrated advantages over SS-DWEPI for resolution and image quality. In the healthy subjects, vessel wall visibility was significantly higher with diffusion-prepared TSE (p < 0.001). Vessel wall thicknesses measured from diffusion-prepared TSE were on average 35% thinner than those from the EPI images due to less distortion and partial volume effect (p < 0.001). ADC measurements of healthy carotid vessel wall are 1.53 ± 0.23 × 10−3 mm2/s. In patients the mean ADC measurements in the LRNC area were significantly lower (0.60 ± 0.16×10−3 mm2/s) than those of the fibrous plaque tissue (1.27 ± 0.29 × 10−3 mm2/s, p < 0.01). Diffusion-prepared CMR allows, for the first time, 3D DWI of the carotid arterial wall in vivo with high spatial resolution and improved image quality over SS-DWEPI. It can potentially detect LRNC without the use of contrast agents, allowing plaque characterization in patients with renal insufficiency.
Tài liệu tham khảo
Mendis S, Puska P, Norrving B: Global atlas on cardiovascular disease prevention and control. 2011, World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization, Geneva
Yuan C, Oikawa M, Miller Z, Hatsukami T: MRI of carotid atherosclerosis. J Nucl Cardiol. 2008, 15: 266-75. 10.1016/j.nuclcard.2008.02.001.
Gillard JH: Imaging of carotid artery disease: from luminology to function?. Neuroradiology. 2003, 45: 671-80. 10.1007/s00234-003-1054-5.
Virmani R, Ladich ER, Burke AP, Kolodgie FD: Histopathology of carotid atherosclerotic disease. Neurosurgery. 2006, 59: S219-27. 10.1227/01.NEU.0000239895.00373.E4. discussion S213-213
Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003, 108: 1664-72. 10.1161/01.CIR.0000087480.94275.97.
Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation. 2003, 108: 1772-8. 10.1161/01.CIR.0000087481.55887.C9.
Virmani R, Burke AP, Farb A, Kolodgie FD: Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006, 47: C13-8. 10.1016/j.jacc.2005.10.065.
Saam T, Hatsukami TS, Takaya N, Chu B, Underhill H, Kerwin WS, Cai J, Ferguson MS, Yuan C: The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology. 2007, 244: 64-77. 10.1148/radiol.2441051769.
Wasserman BA, Smith WI, Trout HH, Cannon RO, Balaban RS, Arai AE: Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology. 2002, 223: 566-73. 10.1148/radiol.2232010659.
Corti R, Fayad ZA, Fuster V, Worthley SG, Helft G, Chesebro J, Mercuri M, Badimon JJ: Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation. 2001, 104: 249-52. 10.1161/01.CIR.104.3.249.
Stenvinkel P, Heimburger O, Paultre F, Diczfalusy U, Wang T, Berglund L, Jogestrand T: Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999, 55: 1899-911. 10.1046/j.1523-1755.1999.00422.x.
Shoji T, Emoto M, Tabata T, Kimoto E, Shinohara K, Maekawa K, Kawagishi T, Tahara H, Ishimura E, Nishizawa Y: Advanced atherosclerosis in predialysis patients with chronic renal failure. Kidney Int. 2002, 61: 2187-92. 10.1046/j.1523-1755.2002.00372.x.
Schlaudecker JD, Bernheisel CR: Gadolinium-associated nephrogenic systemic fibrosis. Am Fam Physician. 2009, 80: 711-4.
Qiao Y, Ronen I, Viereck J, Ruberg FL, Hamilton JA: Identification of atherosclerotic lipid deposits by diffusion-weighted imaging. Arterioscler Thromb Vasc Biol. 2007, 27: 1440-6. 10.1161/ATVBAHA.107.141028.
Clarke SE, Hammond RR, Mitchell JR, Rutt BK: Quantitative assessment of carotid plaque composition using multicontrast MRI and registered histology. Magn Reson Med Sci. 2003, 50: 1199-208. 10.1002/mrm.10618.
Kim SE, Treiman GS, Roberts JA, Jeong EK, Shi X, Hadley JR, Parker DL: In vivo and ex vivo measurements of the mean ADC values of lipid necrotic core and hemorrhage obtained from diffusion weighted imaging in human atherosclerotic plaques. J Magn Reson Imag. 2011, 34: 1167-75. 10.1002/jmri.22736.
Young VE, Patterson AJ, Sadat U, Bowden DJ, Graves MJ, Tang TY, Priest AN, Skepper JN, Kirkpatrick PJ, Gillard JH: Diffusion-weighted magnetic resonance imaging for the detection of lipid-rich necrotic core in carotid atheroma in vivo. Neuroradiology. 2010, 52: 929-36. 10.1007/s00234-010-0680-y.
Kim SE, Jeong EK, Shi XF, Morrell G, Treiman GS, Parker DL: Diffusion-weighted imaging of human carotid artery using 2D single-shot interleaved multislice inner volume diffusion-weighted echo planar imaging (2D ss-IMIV-DWEPI) at 3 T: diffusion measurement in atherosclerotic plaque. J Magn Reson Imag. 2009, 30: 1068-77. 10.1002/jmri.21944.
Thomas DL, Pell GS, Lythgoe MF, Gadian DG, Ordidge RJ: A quantitative method for fast diffusion imaging using magnetization-prepared TurboFLASH. Magn Reson Med. 1998, 39: 950-60. 10.1002/mrm.1910390613.
Alsop DC: Phase insensitive preparation of single-shot RARE: application to diffusion imaging in humans. Magn Reson Med. 1997, 38: 527-33. 10.1002/mrm.1910380404.
Koktzoglou I, Li D: Diffusion-prepared segmented steady-state free precession: Application to 3D black-blood cardiovascular magnetic resonance of the thoracic aorta and carotid artery walls. J Cardiovasc Magn Reson. 2007, 9: 33-42. 10.1080/10976640600843413.
Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C: Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med. 2007, 58: 973-81. 10.1002/mrm.21385.
Feinberg DA, Hoenninger JC, Crooks LE, Kaufman L, Watts JC, Arakawa M: Inner volume MR imaging: technical concepts and their application. Radiology. 1985, 156: 743-7. 10.1148/radiology.156.3.4023236.
Fan Z, Zhang Z, Chung YC, Weale P, Zuehlsdorff S, Carr J, Li D: Carotid arterial wall MRI at 3 T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imag. 2010, 31: 645-54. 10.1002/jmri.22058.
Feinberg DA, Oshio K: Phase errors in multi-shot echo planar imaging. Magn Reson Med. 1994, 32: 535-9. 10.1002/mrm.1910320418.
Yuan C, Schmiedl UP, Weinberger E, Krueck WR, Rand SD: Three-dimensional fast spin-echo imaging: pulse sequence and in vivo image evaluation. J Magn Reson Imag. 1993, 3: 894-9. 10.1002/jmri.1880030617.
Boussel L, Herigault G, de la Vega A, Nonent M, Douek PC, Serfaty JM: Swallowing, arterial pulsation, and breathing induce motion artifacts in carotid artery MRI. J Magn Reson Imag. 2006, 23: 413-5. 10.1002/jmri.20525.
Toussaint JF, Southern JF, Fuster V, Kantor HL: Water diffusion properties of human atherosclerosis and thrombosis measured by pulse field gradient nuclear magnetic resonance. Arterioscler Thromb Vasc Biol. 1997, 17: 542-6. 10.1161/01.ATV.17.3.542.
Grobbee DE, Bots ML: Carotid artery intima-media thickness as an indicator of generalized atherosclerosis. J Intern Med. 1994, 236: 567-73. 10.1111/j.1365-2796.1994.tb00847.x.