Deep levels in GaN studied by deep level transient spectroscopy and Laplace transform deep-level spectroscopy
Tóm tắt
In this study we present the results of investigations on Schottky Au-GaN diodes by means of conventional DLTS and Laplace DLTS methods within the temperature range of 77–350 K. Si-doped GaN layers were grown by Molecular Beam Epitaxy technique (MBE) on sapphire substrates. DLTS signal spectra revealed the presence of four majority traps: two hightemperature and two low-temperature peaks. Using LDLTS method and Arrhenius plots the activation energy and capture cross sections were obtained. For two high-temperature majority traps they are equal to E1 = 0.65 eV, σ1 = 8.2 × 10−16cm2 and E2 = 0.58 eV, σ2 = 2.6 × 10−15 cm2 whereas for the two low-temperature majority traps E3 = 0.18 eV, σ3 = 9.72 × 10−18 cm2 and E4 = 0.13 eV, σ4 = 9.17 × 10−18 cm2. It was also found that the traps are related to point defects. Possible origin of the traps was discussed and the results were compared with the data found elsewhere [1–5].
Tài liệu tham khảo
Hacke P., Detchprohm T., Hiramatsu K., Sawaki N., J. Appl. Phys., 76 (1994), 304.
Jenkins D. W., Dow J. D., Phys. Rev. B, 39 (1989), 3317.
Fang Z-Q., Look D. C., Kim W., Fan Z., Botchkarev A., Morkoc H., Appl. Phys. Lett., 72 (1998), 2277.
Morkoc H., Materials Science and Engineering R, 33 (2001), 135.
Miskufova M., Computational studies of III — V nitride Semiconductors, The Chemistry department of University College London (UCL), December 19, 2011.
Cho H. K., J. Appl. Phys., 94 (2003), 1485.
Rhoderic E. H., Wiliams R. H., Metal Semiconductor Contact, 2nd ed., Clarenden, Oxford, 1988.
Sze S. M., Kwok K. Ng., Physics of Semiconductor Devices, 3rd ed., J. Wiley and Sons, Inc., Hoboken, New Jersey, 2007.
Blood P., Orton J. W., The electrical characterization of semiconductors: Majority carriers and electron states, Academic Press, 1992.
Dyba P., Placzek-Popko E., Zielony E., Gumienny Z., Grzanka S., Czarnecki R., Suski T., Acta Phys. Pol. A, 119 (2011), 669.
Wang D., Yu L. S., Lau S. S., Yu E. T., Appl. Phys. Lett., 72 (1998), 1211.
Placzek-popko E., Trzmiel J., Zielony E., Grzanka S., Czernecki R., Suski T., Physica B, 404 (2009), 4889.
Haase D., Schmid M., Kurner W., Dornen A., Harle V., Scholz F., Burkard M., Schweizer H., Appl. Phys. Lett., 69 (1996), 2525.
Gotz W., Johnson N.M., Amano H., Akasaki I., Appl. Phys. Lett., 65 (1994), 463.
Fang Z.-Q., Look D.C., Visconti P., Wang D.F., Lu C.Z., Yun F., Morkoc H., Appl. Phys. Lett., 78 (2001), 2178.
Umana-membreno G.A., Dell J.M., Nener B.D., Parish G., Faraone L., Mishra U.K., IEEE Trans. Electron. Dev., 50 (2003), 2326.
Wua L., Meyera W.E., Auret F.D., M. HAYES, Physica B, 340–342 (2003), 475.
Tokuda Y., Matuoka Y., Yoshida K., Ueda H., Phys. Stat. Sol. (C), 4 (2007), 2568.