Electron transport chain dysfunction by H2O2 is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria

Journal of bioenergetics - Tập 43 - Trang 135-147 - 2011
Christian Cortés-Rojo1, Mirella Estrada-Villagómez2, Elizabeth Calderón-Cortés3, Mónica Clemente-Guerrero4, Ricardo Mejía-Zepeda5, Istvan Boldogh6, Alfredo Saavedra-Molina2,6
1Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
2Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
3Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
4Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
5Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, UNAM, Tlalnepantla, México
6School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA

Tóm tắt

The mitochondrial electron transport chain (ETC) contains thiol groups (−SH) which are reversibly oxidized to modulate ETC function during H2O2 overproduction. Since deleterious effects of H2O2 are not limited to –SH oxidation, due to the formation of other H2O2-derived species, some processes like lipoperoxidation could enhance the effects of H2O2 over ETC enzymes, disrupt their modulation by –SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H2O2 on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast. Only complex III activity from lipoperoxidation-sensitive mitochondria exhibited a higher susceptibility to H2O2 and increased superoxide production. The recovery of ETC activity by the thiol reductanct β-mercaptoethanol (BME) was also altered at complex III, and a role was attributed to lipoperoxidation, the latter being also responsible for iron release. A hypothetical model linking lipoperoxidation, increased complex III damage, superoxide production and iron release is given.

Tài liệu tham khảo

Avéret N, Fitton V, Bunoust O, Rigoulet M, Guérin B (1998) Mol Cell Biochem 184:67–79 Beal MF (2003) Ann NY Acad Sci 991:120–131 Boveris A, Cadenas E (1975) FEBS Lett 54:311–314 Breuer W, Epsztejn S, Cabantchik ZI (1995) J Biol Chem 270:24209–24215 Buege JA, Aust D (1978) Methods Enzymol 52:302–310 Cadenas E, Davies KJA (2000) Free Radic. Biol Méd 29:222–230 Cardoso SM, Pereira C, Oliveira R (1999) Free Radic. Biol Méd 26:3–13 Chen Y-R, Gunther MR, Mason RP (1999) J Biol Chem 274:3308–3314 Chen H, Zheng C, Zhang Y, Chang Y-Z, Qian ZM, Shen X (2006) Int J Biochem Cell Biol 38:1402–1416 Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, Manzo-Avalos S, Uribe S, Boldogh I, Saavedra-Molina A (2007) Free Radic Res 41:1212–1223 Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, Estrada-Villagómez M, Manzo-Avalos S, Mejía-Zepeda R, Boldogh I, Saavedra-Molina A (2009) J Bioenerg Biomembr 41:15–28 Dikalov S, Losik T, Arbiser JL (2008) Biochem Pharmacol 76:589–596 Dimroth P, Kaim G, Matthey U (2000) J Exp Biol 203:51–59 Forman HJ, Fukuto JM, Torres M (2004) Am J Physiol Cell Physiol 287:C246–C256 Gornall AG, Bardawill CJ, David MM (1949) J Biol Chem 177:751–765 Guérin B, Labbe P, Somlo M (1979) Methods Enzymol 55:149–159 Hallberg EM, Shu Y, Hallberg RL (1993) Mol Cell Biol 13:3050–3057 Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York Holman RT (1954) In: Holman RT, Lundberg WO, Malkin T (eds) Progress in the chemistry of fats and other lipids: autooxidation of fats and related substances. Academic Press, New York, pp 51–98 Hondorp ER, Matthews RG (2004) PLoS Biol 2:e336 Hurd TR, Prime TA, Harbour ME, Lilley KS, Murphy MP (2007) J Biol Chem 282:22040–22051 Hurd TR, Requejo R, Filipovska A, Brown S, Prime TA, Robinson AJ, Fearnley IM, Murphy MP (2008) J Biol Chem 283:24801–24815 Jacob C, Holme AL, Fry FH (2004) Org Biomol Chem 2:1953–1956 Jakob U, Eser M, Bardwell JC (2000) J Biol Chem 275:38302–38310 James AM, Cochemé HM, Smith RAJ, Murphy MP (2005) J Biol Chem 280:21295–21312 Jang S, Imlay JA (2007) J Biol Chem 282:929–937 Jha N, Jurma O, Lalli G, Liu Y, Pettus EH, Greenamyre JT, Liu RM, Forman HJ, Andersen JK (2000) J Biol Chem 275:26096–26101 Jones DP (2008) Am J Physiol Cell Physiol 295:849–868 Kiley PJ, Storz G (2004) PLoS Biol 2:1714–1717 Kim JR, Yoon HW, Kwon KS, Lee SR, Rhee SG (2000) Anal Biochem 283:214–221 Kim MH, Chung J, Yang JW, Chung SM, Kwag NH, Yoo JS (2003) Korean J Ophthalmol 17:19–28 Korenaga M, Wang T, Li Y, Showalter LA, Chan T, Sun J, Weinman SA (2005) J Biol Chem 280:37481–37488 Krause KH (2007) Exp Gerontol 42:256–262 Kwok E, Kosman D (2006) In: Tamàs MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification. From microbes to man: iron in yeast: mechanisms involved in homeostasis. Springer, Berlin, pp 59–100 Lê-Quôc K, Lê-Quôc D, Gaudemer Y (1981) Biochemistry 20:1705–1710 Lin TK, Hughes G, Muratovska A, Blaikie FH, Brookes PS, Darley-Usmar V, Smith RA, Murphy MP (2002) J Biol Chem 277:17048–17056 Longo VD, Liou LL, Valentine JS, Gralla EB (1999) Arch Biochem Biophys 365:131–142 Łukaszewicz-Hussain A, Moniuszko-Jakoniuk J (2004) Polish J Environ Studies 13:397–401 Ly JD, Grubb DR, Lawen A (2003) Apoptosis 8:115–128 Malis CD, Weber PC, Leaf A, Bonventre JV (1999) Proc Natl Acad Sci USA 87:8845–8849 Martin J, Mahlke K, Pfanner N (1991) J Biol Chem 266:18051–18057 Martin CE, Oh C, Jiang Y (2007) Biochim Biophys Acta 1771:271–285 Masini A, Ceccarelli D, Giovannini F, Montosi G, Garuti C, Pietrangelo AJ (2000) J Bioenerg Biomembr 32:175–182 Matsuno-Yagi A, Hatefi Y (1996) J Biol Chem 271:6164–6171 Muller FL, Crofts AR, Kramer DM (2002) Biochemistry 41:7866–7874 Nicholls DG (2005) Cell Calcium 38:311–317 North JA, Spector AA, Buettner GR (1992) J Biol Chem 267:5743–5746 Nulton-Persson AC, Szweda LI (2001) J Biol Chem 276:23357–23361 Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, Weinman SA (2002) Gastroenterology 122:366–375 Schoneich C, Dillinger U, von Bruchhausen F, Asmus KD (1992) Arch Biochem Biophys 292:456–467 Seppet E, Gruno M, Peetsalu A, Gizatullina Z, Nguyen HP, Vielhaber S, Wussling MHP, Trumbeckaite S, Arandarcikaite O, Jerzembeck D, Sonnabend M, Jegorov K, Zierz S, Striggow F, Gellerich FN (2009) Int J Mol Sci 10:2252–2303 Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, Fung V, Smith RA, Murphy MP, Taylor KM, Protect Study Group (2010) Mov Disord 25:1670–1674 Spector A, Wang G-M, Wang R-R (1993) Proc Natl Acad Sci USA 90:7485–7489 Tatsumi T, Kako KJ (1993) Basic Res Cardiol 88:199–211 Turrens JF (2003) J Physiol 552:335–344 Ueda N, Guidet B, Shah SV (1993) Am J Physiol 265:F435–F439 Uribe S, Ramirez J, Peña A (1985) J Bact 161:1195–1200 Vygodina TV, Konstantinov AA (2007) Biochemistry (Mosc) 72:1056–1064 Zheng M, Aslund F, Storz G (1998) Science 279:1718–1721 Zini R, Berdeaux A, Morin D (2007) Free Radic Res 41:1159–1166