Interaction in dual species biofilms between Staphylococcus xylosus and Staphylococcus aureus
Tài liệu tham khảo
Ahn, 2018, Lipoteichoic acid inhibits Staphylococcus aureus biofilm formation, Front. Microbiol., 27, 327, 10.3389/fmicb.2018.00327
Alomar, 2008, Effect of Lactococcus garvieae, Lactococcus lactis and Enterococcus faecalis on the behaviour of Staphylococcus aureus in microfiltered milk, Food Microbiol., 25, 502, 10.1016/j.fm.2008.01.005
Andersen, 2006, Construction of a multiple fluorescence labelling system for use in co-invasion studies of Listeria monocytogenes, BMC Microbiol., 6, 86, 10.1186/1471-2180-6-86
Baba, 2002, Genome and virulence determinants of high virulence community-acquired MRSA, Lancet, 359, 1819, 10.1016/S0140-6736(02)08713-5
Bellio, 2019, Insight into the distribution of staphylococci and their enterotoxins in cheeses under natural conditions, Front. Microbiol., 9, 3233, 10.3389/fmicb.2018.03233
Bridier, 2010, The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method, J. Microbiol. Methods, 82, 64, 10.1016/j.mimet.2010.04.006
Bridier, 2012, Biofilms of a Bacillus subtilis hospital isolate protect Staphylococcus aureus from biocide action, PLoS One, 7, 10.1371/journal.pone.0044506
Brückner, 1997, Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus, FEMS Microbiol. Lett., 151, 1, 10.1016/S0378-1097(97)00116-X
Chavant, 2007, A new device for rapid evaluation of biofilm formation potential by bacteria, J. Microbiol. Methods, 68, 605, 10.1016/j.mimet.2006.11.010
Coton, 2010, Biodiversity of coagulase-negative staphylococci in French cheeses, dry fermented sausages, processing environments and clinical samples, Int. J. Food Microbiol., 137, 221, 10.1016/j.ijfoodmicro.2009.11.023
Delbès, 2007, Monitoring bacterial communities in raw milk and cheese by culture-dependent and -independent 16S rRNA gene-based analyses, Appl. Environ. Microbiol., 73, 1882, 10.1128/AEM.01716-06
Delbès-Paus, 2010, Contribution of hydrogen peroxide to the inhibition of Staphylococcus aureus by Lactococcus garvieae in interaction with raw milk microbial community, Food Microbiol., 27, 924, 10.1016/j.fm.2010.05.031
Even, 2009, Staphylococcus aureus virulence expression is impaired by Lactococcus lactis in mixed cultures, Appl. Environ. Microbiol., 75, 4459, 10.1128/AEM.02388-08
Friedman, 2006, Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus, Antimicrob. Agents Chemother., 50, 2137, 10.1128/AAC.00039-06
Gill, 2005, Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain, J. Bacteriol., 187, 2426, 10.1128/JB.187.7.2426-2438.2005
Gross, 2001, Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces, Infect. Immun., 69, 3423, 10.1128/IAI.69.5.3423-3426.2001
Gutiérrez, 2012, Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces, Appl. Environ. Microbiol., 78, 8547, 10.1128/AEM.02045-12
Hennekinne, 2012, Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation, FEMS Microbiol. Rev., 36, 815, 10.1111/j.1574-6976.2011.00311.x
Heydorn, 2000, Quantification of biofilm structures by the novel computer program COMSTAT, Microbiology, 146, 2395, 10.1099/00221287-146-10-2395
Johler, 2015, Outbreak of staphylococcal food poisoning among children and staff at a Swiss boarding school due to soft cheese made from raw milk, J. Dairy Sci., 98, 2944, 10.3168/jds.2014-9123
Le, 2014, Molecular determinants of staphylococcal dispersal and structuring, Front. Cell. Infect. Microbiol., 4, 167, 10.3389/fcimb.2014.00167
Leroy, 2010, Biodiversity of indigenous staphylococci of naturally fermented dry sausages and manufacturing environments of small-scale processing units, Food Microbiol., 27, 294, 10.1016/j.fm.2009.11.005
Makovcova, 2017, Dynamics of mono- and dual-species biofilm formation and interactions between Staphylococcus aureus and Gram-negative bacteria, Microb. Biotechnol., 10, 819, 10.1111/1751-7915.12705
Melchior, 2006, Biofilms: a role in recurrent mastitis infections?, Vet. J., 171, 398, 10.1016/j.tvjl.2005.01.006
Nagase, 2002, Isolation and species distribution of staphylococci from animal and human skin, J. Vet. Med. Sci., 64, 245, 10.1292/jvms.64.245
Nogueira Viçosa, 2018, Staphylococcus aureus undergoes major transcriptional reorganization during growth with Enterococcus faecalis in milk, Food Microbiol., 73, 17, 10.1016/j.fm.2018.01.007
Oliveira, 2006, Biofilm-forming ability profiling of Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates, Vet. Microbiol., 118, 133, 10.1016/j.vetmic.2006.07.008
Oxaran, V., Dittmann, K.K., Lee, S.H.I., Chaul, L.T., Fernandes de Oliveira, C.A., Corassin, C.H., Alves, V.F., De Martinis, E.C.P., Gram, L., 2018. Behavior of foodborne pathogens Listeria monocytogenes and Staphylococcus aureus in mixed-species biofilms exposed to biocides. Appl. Environ. Microbiol. 84, e02038–18. doi: https://doi.org/10.1128/AEM.02038-18.
Periasamy, 2012, How Staphylococcus aureus biofilms develop their characteristic structure, PNAS, 109, 1281, 10.1073/pnas.1115006109
Peters, 2010, Microbial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms, FEMS Immunol. Med. Microbiol., 59, 493, 10.1111/j.1574-695X.2010.00710.x
Planchon, 2009, Comparative subproteome analyses of planktonic and sessile Staphylococcus xylosus C2a: new insight in cell physiology of a coagulase-negative Staphylococcus in biofilm, J. Proteome Res., 8, 1797, 10.1021/pr8004056
R Core Team, 2019
Rieu, 2008, Interactions in dual species biofilms between Listeria monocytogenes EGD-e and several strains of Staphylococcus aureus, Int. J. Food Microbiol., 126, 76, 10.1016/j.ijfoodmicro.2008.05.006
Rode, 2007, Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions, Int. J. Food Microbiol., 116, 372, 10.1016/j.ijfoodmicro.2007.02.017
Samelis, 2014, J. Food Prot., 77, 1703, 10.4315/0362-028X.JFP-14-105
Schneider, 2012, NIH image to ImageJ: 25 years of image analysis, Nat. Methods, 9, 671, 10.1038/nmeth.2089
Stenz, 2008, Impact of oleic acid (cis −9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus, FEMS Microbiol. Lett., 287, 149, 10.1111/j.1574-6968.2008.01316.x
Talon, 2014, Fermented meat products and role of starter culture, 870
Talon, 2007, Microbial ecosystems of traditional fermented meat products: the importance of indigenous starters, Meat Sci., 77, 55, 10.1016/j.meatsci.2007.04.023
Talon, 2007, Diversity of micro-organisms in environments and traditional dry fermented sausages produced in small-scale processing units in Mediterranean countries and Slovakia. Microbial ecosystems of processing environments, Meat Sci., 77, 570, 10.1016/j.meatsci.2007.05.006
Tetili, 2017, Anti-staphylococcal enterotoxinogenesis of Lactococcus lactis in Algerian raw milk cheese, Food Technol. Biotechnol., 55, 511, 10.17113/ftb.55.04.17.5105
Verdier-Metz, 2012, Cow teat skin, a potential source of diverse microbial populations for cheese production, Appl. Environ. Microbiol., 78, 326, 10.1128/AEM.06229-11
Vermassen, 2016, Adaptation of Staphylococcus xylosus to nutrients and osmotic stress in a salted meat model, Front. Microbiol., 2016, 87