The smell of longevity: a combination of Volatile Organic Compounds (VOCs) can discriminate centenarians and their offspring from age-matched subjects and young controls

GeroScience - Tập 42 Số 1 - Trang 201-216 - 2020
Maria Conte1, Giuseppe Conte2, Morena Martucci1, Daniela Monti3, Laura Casarosa2, Andrea Serra2, Marcello Mele2, Claudio Franceschi4, Stefano Salvioli5
1Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
2Department of Agriculture, Food, and Environment, University of Pisa, Pisa, Italy
3Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy.
4Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
5Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Bologna, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adebayo AS, Mundhe SD, Awobode HO, Onile OS, Agunloye AM, Isokpehi RD, Shouche YS, Santhakumari B, Anumudu CI (2018) Metabolite profiling for biomarkers in Schistosoma haematobium infection and associated bladder pathologies. PLoS Negl Trop Dis 12(4):e0006452. https://doi.org/10.1371/journal.pntd.0006452

Ahmed I, Greenwood R, Costello Bde L, Ratcliffe NM, Probert CS (2013) An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS One 8(3):e58204. https://doi.org/10.1371/journal.pone.0058204

Ahmed I, Greenwood R, Costello B, Ratcliffe N, Probert CS (2016) Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment Pharmacol Ther 43(5):596–611. https://doi.org/10.1111/apt.13522

Amann A, Costello Bde L, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T (2014) The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res 8(3):034001. https://doi.org/10.1088/1752-7155/8/3/034001

Bacalini MG, Franceschi C, Gentilini D, Ravaioli F, Zhou X, Remondini D, Pirazzini C, Giuliani C, Marasco E, Gensous N, Di Blasio AM, Ellis E, Gramignoli R, Castellani G, Capri M, Strom S, Nardini C, Cescon M, Grazi GL, Garagnani P (2019) Molecular aging of human liver: an epigenetic/transcriptomic signature. J Gerontol A Biol Sci Med Sci 74(1):1–8. https://doi.org/10.1093/gerona/gly048

Borelli V, Vanhooren V, Lonardi E, Reiding KR, Capri M, Libert C, Garagnani P, Salvioli S, Franceschi C, Wuhrer M (2015) Plasma N-glycome signature of down syndrome. J Proteome Res 14(10):4232–4245. https://doi.org/10.1021/acs.jproteome.5b00356

Broza YY, Zuri L, Haick H (2014) Combined volatolomics for monitoring of human body chemistry. Sci Rep 4:4611. https://doi.org/10.1038/srep04611

Bucci L, Ostan R, Cevenini E, Pini E, Scurti M, Vitale G, Mari D, Caruso C, Sansoni P, Fanelli F, Pasquali R, Gueresi P, Franceschi C, Monti D (2016) Centenarians’ offspring as a model of healthy aging: a reappraisal of the data on Italian subjects and a comprehensive overview. Aging (Albany NY) 8(3):510–519. https://doi.org/10.18632/aging.100912

Chambers ES, Preston T, Frost G, Morrison DJ (2018) Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 7(4):198–206. https://doi.org/10.1007/s13668-018-0248-8

Collino S, Montoliu I, Martin FP, Scherer M, Mari D, Salvioli S, Bucci L, Ostan R, Monti D, Biagi E, Brigidi P, Franceschi C, Rezzi S (2013) Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 8(3):e56564. https://doi.org/10.1371/journal.pone.0056564

Das S, Pal S, Mitra M (2016) Significance of exhaled breath test in clinical diagnosis: a special focus on the detection of diabetes mellitus. J Med Biol Eng 36(5):605–624. https://doi.org/10.1007/s40846-016-0164-6

Dator RP, Solivio MJ, Villalta PW, Balbo S (2019) Bioanalytical and mass spectrometric methods for aldehyde profiling in biological fluids. Toxics 4:7(2). https://doi.org/10.3390/toxics7020032

De Maesschalck R, Jouan-Rimbaud D, Massart DL (2000) The Mahalanobis distance. Chemom Intell Lab Syst 50(1):1–18. https://doi.org/10.1016/S0169-7439(99)00047-7

Dixon E, Clubb C, Pittman S, Ammann L, Rasheed Z, Kazmi N, Keshavarzian A, Gillevet P, Rangwala H, Couch RD (2011) Solid-phase microextraction and the human fecal VOC metabolome. PLoS One 6(4):e18471. https://doi.org/10.1371/journal.pone.0018471

Filipiak W, Mochalski P, Filipiak A, Ager C, Cumeras R, Davis CE, Agapiou A, Unterkofler K, Troppmair J (2016) A compendium of volatile organic compounds (VOCs) released by human cell lines. Curr Med Chem 23(20):2112–2131. https://doi.org/10.2174/092986732366616031612505

Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9. https://doi.org/10.1093/gerona/glu057

Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x

Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105. https://doi.org/10.1016/j.mad.2006.11.016

Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘Garb-aging’. Trends Endocrinol Metab 28(3):199–212. https://doi.org/10.1016/j.tem.2016.09.005

Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S (2018) The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne) 5(61). https://doi.org/10.3389/fmed.2018.00061

Franceschi C, Garagnani P, Gensous N, Bacalini MG, Conte M, Salvioli S (2019) Accelerated bio-cognitive aging in down syndrome: state of the art and possible deceleration strategies. Aging Cell 18(3):e12903. https://doi.org/10.1111/acel.12903

Fuchs P, Loeseken C, Schubert JK, Miekisch W (2010) Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer 126(11):2663–2670. https://doi.org/10.1002/ijc.24970

Furne J, Springfield J, Koenig T, DeMaster E, Levitt MD (2001) Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem Pharmacol 62(2):255–259. https://doi.org/10.1016/S0006-2952(01)00657-8

Gao Q, Lee WY (2019) Urinary metabolites for urological cancer detection: a review on the application of volatile organic compounds for cancers. Am J Clin Exp Urol 7(4):232–248

Garner CE, Smith S, de Lacy CB, White P, Spencer R, Probert CS, Ratcliffe NM (2007) Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J 21(8):1675–1688. https://doi.org/10.1096/fj.06-6927com

Giuliani C, Pirazzini C, Delledonne M, Xumerle L, Descombes P, Marquis J, Mengozzi G, Monti D, Bellizzi D, Passarino G, Luiselli D, Franceschi C, Garagnani P (2017) Centenarians as extreme phenotypes: an ecological perspective to get insight into the relationship between the genetics of longevity and age-associated diseases. Mech Ageing Dev 165(Pt B):195–201. https://doi.org/10.1016/j.mad.2017.02.007

Hakim M, Broza YY, Barash O, Peled N, Phillips M, Amann A, Haick H (2012) Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev 112(11):5949–5966. https://doi.org/10.1021/cr300174a

Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49(2):359–367. https://doi.org/10.1016/j.molcel.2012.10.016

Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115. https://doi.org/10.1186/gb-2013-14-10-r115

Jia Z, Patra A, Kutty VK, Venkatesan T (2019) Critical review of volatile organic compound analysis in breath and in vitro cell culture for detection of lung cancer. Metabolites 9(3). https://doi.org/10.3390/metabo9030052

Kawai Y, Takeda S, Terao J (2007) Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography-mass spectrometry. Chem Res Toxicol 20(1):99–107. https://doi.org/10.1021/tx060199e

Lee J, Ngo J, Blake D, Meinardi S, Pontello AM, Newcomb R, Galassetti PR (2009) Improved predictive models for plasma glucose estimation from multi-linear regression analysis of exhaled volatile organic compounds. J Appl Physiol 107(1):155–160. https://doi.org/10.1152/japplphysiol.91657.2008

Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E (1999) Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest 104(8):1107–1114. https://doi.org/10.1172/JCI7712

Liu D, Zhao N, Wang M, Pi X, Feng Y, Wang Y, Tong H, Zhu L, Wang C, Li E (2018) Urine volatile organic compounds as biomarkers for minimal change type nephrotic syndrome. Biochem Biophys Res Commun 496(1):58–63. https://doi.org/10.1016/j.bbrc.2017.12.164

Mardia KV (1975) Assessment of multinormality and robustness of Hotelling’s T2 test. Appl Stat 24:163–171

Mardia KV, Bookstein FL, Moreton IJ (2000) Statistical assessment of bilateral symmetry of shapes. Biometrika 87:285–300. https://doi.org/10.1093/biomet/87.2.285

Mazzatenta A, Pokorski M, Di Giulio C (2015) Real time analysis of volatile organic compounds (VOCs) in centenarians. Respir Physiol Neurobiol 209:47–51. https://doi.org/10.1016/j.resp.2014.12.014

Mochalski P, King J, Klieber M, Unterkofler K, Hinterhuber H, Baumann M, Amann A (2013) Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst. 138(7):2134–2145. https://doi.org/10.1039/C3AN36756H

Mochalski P, Theurl M, Sponring A, Unterkofler K, Kirchmair R, Amann A (2015) Analysis of volatile organic compounds liberated and metabolised by human umbilical vein endothelial cells (HUVEC) in vitro. Cell Biochem Biophys 71(1):323–329. https://doi.org/10.1007/s12013-014-0201-4

Mochalski P, Leja M, Gasenko E, Skapars R, Santare D, Sivins A, Aronsson DE, Ager C, Jaeschke C, Shani G, Mitrovics J, Mayhew CA, Haick H (2018) Ex vivo emission of volatile organic compounds from gastric cancer and non-cancerous tissue. J Breath Res 12(4):046005. https://doi.org/10.1088/1752-7163/aacbfb

Montoliu I, Scherer M, Beguelin F, DaSilva L, Mari D, Salvioli S, Martin FP, Capri M, Bucci L, Ostan R, Garagnani P, Monti D, Biagi E, Brigidi P, Kussmann M, Rezzi S, Franceschi C, Collino S (2014) Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY) 6(1):9–25. https://doi.org/10.18632/aging.100630

Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A, Marotta F, Yadav H (2018) Gut microbiome and aging: physiological and mechanistic insights. Nutr Health Aging 4(4):267–285. https://doi.org/10.3233/NHA-170030

Pleil JD, Stiegel MA, Risby TH (2013) Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders. J Breath Res 7(1):017107. https://doi.org/10.1088/1752-7155/7/1/017107

Polyviou T, MacDougall K, Chambers ES, Viardot A, Psichas A, Jawaid S, Harris HC, Edwards CA, Simpson L, Murphy KG, Zac-Varghese SE, Blundell JE, Dhillo WS, Bloom SR, Frost GS, Preston T, Tedford MC, Morrison DJ (2016) Randomised clinical study: inulin short-chain fatty acid esters for targeted delivery of short-chain fatty acids to the human colon. Aliment Pharmacol Ther 44(7):662–672. https://doi.org/10.1111/apt.13749

Povolo M, Contarini G, Mele M, Secchiari P (2007) Study on the influence of pasture on volatile fraction of ewes’ dairy products by solid-phase microextraction and gas chromatography-mass spectrometry. J Dairy Sci 90(2):556–569. https://doi.org/10.3168/jds.S0022-0302(07)71539-4

Probert CS, Ahmed I, Khalid T, Johnson E, Smith S, Ratcliffe N (2009) Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J Gastrointest Liver Dis 18(3):337–343

Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, Greenwood R, Sikaroodi M, Lam V, Crotty P, Bailey J, Myers RP, Rioux KP (2013) Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 11(7):868–75.e1-3. https://doi.org/10.1016/j.cgh.2013.02.015

SAS Institute Inc., Cary, NC, United States

Serra A, Buccioni A, Rodriguez-Estrada MT, Conte G, Cappucci A, Mele M (2014) Fatty acid composition, oxidation status and volatile organic compounds in “Colonnata” lard from Large White or Cinta Senese pigs as affected by curing time. Meat Sci 97(4):504–512. https://doi.org/10.1016/j.meatsci.2014.03.002

Sethi S, Nanda R, Chakraborty T (2013) Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin Microbiol Rev 26(3):462–475. https://doi.org/10.1128/CMR.00020-13

Shirasu M, Touhara K (2011) The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem 150(3):257–266. https://doi.org/10.1093/jb/mvr090

Silva CL, Passos M, Câmara JS (2011) Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br J Cancer 105(12):1894–1904. https://doi.org/10.1038/bjc.2011.437

Silva CL, Passos M, Câmara JS (2012) Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers--a powerful strategy for breast cancer diagnosis. Talanta. 89:360–368. https://doi.org/10.1016/j.talanta.2011.12.041

Silva CL, Perestrelo R, Silva P, Tomás H, Câmara JS (2017) Volatile metabolomics signature of human breast cancer cell lines. Sci Rep 7:43969. https://doi.org/10.1038/srep43969

Smith S, Burden H, Persad R, Whittington K, de Lacy CB, Ratcliffe NM, Probert CS (2008) A comparative study of the analysis of human urine headspace using gas chromatography-mass spectrometry. J Breath Res 2(3):037022. https://doi.org/10.1088/1752-7155/2/3/037022

Tangerman A (2009) Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices. J Chromatogr B Anal Technol Biomed Life Sci 877(28):3366–3377. https://doi.org/10.1016/j.jchromb.2009.05.026

Vanhooren V, Dewaele S, Libert C, Engelborghs S, De Deyn PP, Toussaint O, Debacq-Chainiaux F, Poulain M, Glupczynski Y, Franceschi C, Jaspers K, van der Pluijm I, Hoeijmakers J, Chen CC (2010) Serum N-glycan profile shift during human ageing. Exp Gerontol. https://doi.org/10.1016/j.exger.2010.08.009

von Grafenstein S, Fuchs JE, Huber MM, Bassi A, Lacetera A, Ruzsanyi V, Troppmair J, Amann A, Liedl KR (2014) Precursors for cytochrome P450 profiling breath tests from an in silico screening approach. J Breath Res 8(4):046001 https://doi.org/10.1088/1752-7155/8/4/046001

Wang M, Xie R, Jia X, Liu R (2017) Urinary volatile organic compounds as potential biomarkers in idiopathic membranous nephropathy. Med Princ Pract 26(4):375–380. https://doi.org/10.1159/000478782