Autoregulation: mediators and renin–angiotensin system in diseases and treatments

Future Journal of Pharmaceutical Sciences - Tập 9 - Trang 1-18 - 2023
Antony Sameh Mansour1
1Ahram Canadian University (ACU), 6th of October, Egypt

Tóm tắt

Hemodynamic regulation is a substantial part of the physiological integrity of the human body. It is based on the delivery of proper blood perfusion to every organ. Five primary vasoactive substances are nearly located throughout the human body, either released from the endothelium, prostanoids, nitric oxide (NO), and endothelin-1 (ET-1); or considered as hormones, bradykinin (BK) and natriuretic peptides (NPs). The circulating mediators are in synchronization with the renin–angiotensin system (RAS) during the pathogenesis of the main vital organs, heart, kidney, lung, liver, and brain. The RAS system has been an extensive therapeutic approach for cardiovascular and renal diseases for decades, but more recently became a crucial regulator of hemodynamics in other organs after the actions of its components were detected in other organs. All the mentioned disorders here begin with the initiation of abnormal imbalance between vasoactive mediators which causes vascular dysfunction and histopathological situations that may induce oxidative stress which exaggerates the disorder if there is no clinical intervention. We will review the currently identified signaling pathways and the possible relationships between those compounds elucidating how they interfere with serious diseases including cardiovascular diseases (CVDs), chronic kidney disease (CKD), pulmonary arterial hypertension (PAH), portal hypertension (PHT), and Alzheimer's disease (AD). Thus, this updated review summarizes years of work that aims to define the contribution of each mediator in both normal and pathological states, besides the drugs based on their activity and their places in either preclinical or clinical trials.

Tài liệu tham khảo

Vaughan CJ, Delanty N (2000) Hypertensive emergencies. The Lancet 356(9227):411–417 Carlson BE, Arciero JC, Secomb TW (2008) Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Heart Circulat Physiol 295(4):H1572–H1579 Dole WP (1987) Autoregulation of the coronary circulation. Prog Cardiovasc Dis 29(4):293–323 Dautzenberg M, Keilhoff G, Just A (2011) Modulation of the myogenic response in renal blood flow autoregulation by NO depends on endothelial nitric oxide synthase (eNOS), but not neuronal or inducible NOS. J Physiol 589(19):4731–4744 Xavier FE, Aras-López R, Arroyo-Villa I, Del Campo L, Salaices M, Rossoni LV, Ferrer M, Balfagón G (2008) Aldosterone induces endothelial dysfunction in resistance arteries from normotensive and hypertensive rats by increasing thromboxane A2 and prostacyclin. Br J Pharmacol 154(6):1225–1235 Local Hormones 1: histamine and the biologically active lipids. In: Rang HP (ed) Rang and Dale’s Pharmacology, 9th edn. Elsevier, London. Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM (2007) Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 49(1):185–192 Smyth EM, FitzGerald GA (2012) The eicosanoids: prostaglandins, thromboxanes, eukotrienes, & related compounds. In: Katzung BG (ed) Basic & clinical pharmacology, 12th edn. McGraw Hill Companies, Inc. New York. Tilley SL, Coffman TM, Koller BH (2001) Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Investig 108(1):15–23 Epstein M (2002) Non-steroidal anti-inflammatory drugs and the continuum of renal dysfunction. J Hyperten 20(6):S17–S23 Yu IS, Lin SR, Huang CC, Tseng HY, Huang PH, Shi GY, Wu HL, Tang CL, Chu PH, Wang LH, Wu KK, Lin SW (2004) TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate-induced death. Blood 104(1):135–142 Ozen G, Aljesri K, Abdelazeem H, Norel X, Turkyılmaz G, Turkyılmaz S, Topal G (2021) Comparative study on the effect of aspirin, TP receptor antagonist and TxA2 synthase inhibitor on the vascular tone of human saphenous vein and internal mammary artery. Life Sci 286:120073 Linder L, Kiowski W, Bühler FR, Lüscher TF (1990) Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation 81(6):1762–1767 Blumenthal DK (2018) Pharmacodynamics: molecular mechanisms of drug action. In: Brunton LL (ed) Goodman & Gilman’s the pharmacological basis of therapeutics, 13th edn. McGraw Hill Companies, Inc. New York Kreisel W, Lazaro A, Trebicka J, Perdekamp MG, Schmitt-Graeff A, Deibert P (2021) Cyclic gmp in liver cirrhosis—role in pathophysiology of portal hypertension and therapeutic implications. Int J Mol Sci 22(19):10372 Bellamy TC, Wood J, Goodwin DA, Garthwaite J (2000) Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses. Proc Natl Acad Sci 97(6):2928–2933 Falk JA, Philip KJ, Schwarz ER (2010) The emergence of oral tadalafil as a once-daily treatment for pulmonary arterial hypertension. Vascular Health Risk Manag 6:273 Singh J, Lee Y, Kellum JA (2022) A new perspective on NO pathway in sepsis and ADMA lowering as a potential therapeutic approach. Crit Care 26(1):1–8 Kedzierski RM, Yanagisawa M (2001) Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol 41(1):851–876 Imai T, Hirata Y, Emori, T, Yanagisawa M, Masaki T, Marumo F (1992) Induction of endothelin-1 gene by angiotensin and vasopressin in endothelial cells. Hypertension, 19(6_pt_2), 753–757 Kuc RE, Carlebur M, Maguire JJ, Yang P, Long L, Toshner M, Morrell NW, Davenport AP (2014) Modulation of endothelin receptors in the failing right ventricle of the heart and vasculature of the lung in human pulmonary arterial hypertension. Life Sci 118(2):391–396 Stow LR, Jacobs ME, Wingo CS, Cain BD (2011) Endothelin-1 gene regulation. FASEB J 25(1):16–28 Kawanabe Y, Nauli SM (2011) Endothelin. Cell Mol Life Sci 68:195–203 Turner AJ, Murphy LJ (1996) Molecular pharmacology of endothelin converting enzymes. Biochem Pharmacol 51(2):91–102 Rapoport RM (2014) Nitric oxide inhibition of endothelin-1 release in the vasculature: in vivo relevance of in vitro findings. Hypertension 64(5):908–914 Vanderheyden M, Bartunek J, Goethals M (2004) Brain and other natriuretic peptides: molecular aspects. Eur J Heart Fail 6(3):261–268 Hall C (2005) NT-ProBNP: the mechanism behind the marker. J Cardiac Fail 11(5):S81–S83 Buettner P, Schumacher K, Dinov B, Zeynalova S, Sommer P, Bollmann A, Husser D, Hindricks G, Kornej J (2018) Role of NT-proANP and NT-proBNP in patients with atrial fibrillation: association with atrial fibrillation progression phenotypes. Heart Rhythm 15(8):1132–1137 Romaniello A, Rubattu S, Vaiarello V, Gigante A, Volpe M, Rosato E (2021) Circulating NT-proANP level is a predictor of mortality for systemic sclerosis: a retrospective study of an Italian cohort. Expert Rev Clin Immunol 17(6):661–666 Najenson AC, Courreges AP, Perazzo JC, Rubio MF, Vatta MS, Bianciotti LG (2018) Atrial natriuretic peptide reduces inflammation and enhances apoptosis in rat acute pancreatitis. Acta Physiol 222(3):e12992 Opgenorth TJ, Wu-Wong JR, Shiosaki K (1992) Endothelin-converting enzymes. FASEB J 6(9):2653–2659 Campbell DJ (2018) Neprilysin inhibitors and bradykinin. Front Med 5:257 Madhani M, Scotland RS, MacAllister RJ, Hobbs AJ (2003) Vascular natriuretic peptide receptor-linked particulate guanylate cyclases are modulated by nitric oxide–cyclic GMP signalling. Br J Pharmacol 139(7):1289–1296 Zhou H, Murthy KS (2003) Identification of the G protein-activating sequence of the single-transmembrane natriuretic peptide receptor C (NPR-C). Am J Physiol Cell Physiol 284(5):C1255–C1261 Ichiki T, Burnett JC Jr (2017) Atrial natriuretic peptide-old but new therapeutic in cardiovascular diseases. Circ J 81(7):913–919 Drugs affecting major organ systems. In: Rang HP (ed) Rang and Dale’s pharmacology, 9th edn. Elsevier, London Yan B, Peng L, Zhao X, Chung H, Li L, Zeng L, Ong H, Wang G (2014) Nesiritide fails to reduce the mortality of patients with acute decompensated heart failure: an updated systematic review and cumulative meta-analysis. Int J Cardiol 177(2):505–509 Sugawara A, Shimada H, Otsubo Y, Kouketsu T, Suzuki S, Yokoyama A (2021) The usefulness of angiotensin-(1–7) and des-Arg9-bradykinin as novel biomarkers for metabolic syndrome. Hypertens Res 44(8):1034–1036 Bork K, Davis-Lorton M (2013) Overview of hereditary angioedema caused by C1-inhibitor deficiency: assessment and clinical management. Eur Ann Allergy Clin Immunol 45(1):7–16 Obtułowicz K (2016) Bradykinin-mediated angioedema. Polish Arch Int Med 126(1–2). Golias C, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A (2007) The kinin system-bradykinin: biological effects and clinical implications. Multiple role of the kinin system-bradykinin. Hippokratia 11(3):124 Terzuoli E, Meini S, Cucchi P, Catalani C, Cialdai C, Maggi CA, Giachetti A, Ziche M, Donnini S (2014) Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation. PLoS ONE 9(1):e84358 Cicardi M, Zuraw BL (2018) Angioedema due to bradykinin dysregulation. J Allergy Clin Immunol 6(4):1132–1141 Schmaier AH (2002) The plasma kallikrein-kinin system counterbalances the renin-angiotensin system. J Clin Investig 109(8):1007–1009 Patel G, Pongracic JA (2019). Hereditary and acquired angioedema. In Allergy & Asthma Proceedings (Vol. 40, No. 6) Cicardi M, Zanichelli A (2010) Acquired angioedema. Allergy Asthma Clin Immunol 6(1):14 Fountain JH, Lappin SL (2017) Physiology, Renin angiotensin system. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2022. PMID: 29261862 Grace JA, Herath CB, Mak KY, Burrell LM, Angus PW (2012) Update on new aspects of the renin–angiotensin system in liver disease: clinical implications and new therapeutic options. Clin Sci 123(4):225–239 Kaltenecker CC, Domenig O, Kopecky C, Antlanger M, Poglitsch M, Berlakovich G, Kain R, Stegbauer J, Rahman M, Hellinger R, Gruber C, Grobe N, Fajkovic H, Eskandary F, Böhmig GA, Säemann MD, Kovarik JJ (2020) Critical role of neprilysin in kidney angiotensin metabolism. Circ Res 127(5):593–606 Sata N, Tanaka Y, Suzuki S, Kamimura R, Mifune H, Nakamura K, Miyahara K, Arima T (2003) Effectiveness of angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker on atrial natriuretic peptide. Circ J 67(12):1053–1058 Kaschina E, Steckelings UM, Unger T (2018) Hypertension and the renin-angiotensin-aldosterone system. In Encyclopedia of endocrine diseases, pp 505–510. Elsevier Editora Schwinghammer TL (2015) Hypertension. In: Wells BG (ed) Pharmacotherapy handbook, 9th edn. McGraw Hill Education, New York. Wright SA, Bardolia C, Bankes D, Amin NS, Turgeon J (2020) Angiotensin converting enzyme (ACE) inhibitor-induced cough resulting in prescribing cascade. Clin Case Rep J 10:1368 Kittikulsuth W, Pollock JS, Pollock DM (2012) Loss of renal medullary endothelin B receptor function during salt deprivation is regulated by angiotensin II. Am J Physiol Renal Physiol 303(5):F659–F666 Kittikulsuth W, Sullivan JC, Pollock DM (2013) ET-1 actions in the kidney: evidence for sex differences. Br J Pharmacol 168(2):318–326 Dendorfer A, Thornagel A, Raasch W, Grisk O, Tempel K, Dominiak P (2002) Angiotensin II induces catecholamine release by direct ganglionic excitation. Hypertension 40(3):348–354 Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 23 September 2022. Gafane-Matemane LF, Kruger R, Smith W, Mels CM, Van Rooyen JM, Mokwatsi GG, Uys AS, Brits SJ, Schutte AE (2021) Characterization of the renin-angiotensin-aldosterone system in young healthy black adults: The african prospective study on the early detection and identification of hypertension and cardiovascular disease (African-PREDICT Study). Hypertension 78(2):400–410 Bain A (2019) Use of calcium channel blockers in cardiovascular disease. Br J Cardiac Nursing 14(2):64–70 Bhatt AS, Vaduganathan M, Solomon SD, Schneeweiss S, Lauffenburger JC, Desai RJ (2022) Sacubitril/valsartan use patterns among older adults with heart failure in clinical practice: a population-based cohort study of> 25 000 Medicare beneficiaries. Eur J Heart Fail 24(9):1506–1515 Somova LI, Mufunda JJ (1992) Renin-angiotensin-aldosterone system and thromboxane A2/prostacyclin in normotensive and hypertensive black Zimbabweans. Ethnicity Disease, pp 27–34 Krum H, Aw TJ, Liew D, Haas S (2006) Blood pressure effects of COX-2 inhibitors. J Cardiovasc Pharmacol 47:S43–S48 Mitchell JA, Kirkby NS (2019) Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharmacol 176(8):1038–1050 Pawlosky N (2013) Cardiovascular risk: Are all NSAIDs alike? Can Pharm J 146(2):80–83 Suzuki JI, Ogawa M, Watanabe R, Takayama K, Hirata Y, Nagai R, Isobe M (2011) Roles of prostaglandin E2 in cardiovascular diseases focus on the potential use of a novel selective EP4 receptor agonist. Int Heart J 52(5):266–269 Katsumata Y, Shinmura K, Sugiura Y, Tohyama S, Matsuhashi T, Ito H, Yan X, Ito K, Yuasa S, Ieda M, Urade Y, Suematsu M, Fukuda K, Sano M (2014) Endogenous prostaglandin D2 and its metabolites protect the heart against ischemia–reperfusion injury by activating Nrf2. Hypertension 63(1):80–87 Palee S, Chattipakorn S, Phrommintikul A, Chattipakorn N (2011) PPARγ activator, rosiglitazone: Is it beneficial or harmful to the cardiovascular system? World J Cardiol 3(5):144 Escure G, Nudel M, Terriou L, Farhat MM, Launay D, Staumont-Salle D, Hachulla GS, Sanges S (2022) Tolerance of bradykinin-releasing drugs in patients with acquired C1 inhibitor deficiency: a case series and review of the literature. Eur J Dermatol 32(1):49–55 Yuan W, Cheng G, Li B, Li Y, Lu S, Liu D, Xiao J, Zhao Z (2017) Endothelin-receptor antagonist can reduce blood pressure in patients with hypertension: a meta-analysis. Blood Press 26(3):139–149 Mokretar K, Velinov H, Postadzhiyan A, Apostolova M (2016) Association of polymorphisms in endothelial nitric oxide synthesis and renin–angiotensin–aldosterone system with developing of coronary artery disease in bulgarian patients. Genet Test Mol Biomarkers 20(2):67–73 McClean DR, Ikram H, Garlick AH, Crozier IG (2001) Effects of omapatrilat on systemic arterial function in patients with chronic heart failure. Am J Cardiol 87(5):565–569 Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E (2004) Omapatrilat and enalapril in patients with hypertension: the omapatrilat cardiovascular treatment vs enalapril (OCTAVE) trial. Am J Hypert 17(2):103–111 FDA Approves Entresto. https://hfsa.org/fda-approves-entresto. Accessed 28 Sept 2022. Novartis Entresto® granted expanded indication in chronic heart failure by FDA. https://www.novartis.com/news/media-releases/novartis-entresto-granted-expanded-indication-chronic-heart-failure-fda. Accessed 28 Sep 2022 Rakugi H, Kario K, Yamaguchi M, Sasajima T, Gotou H, Zhang J (2022) Efficacy of sacubitril/valsartan versus olmesartan in Japanese patients with essential hypertension: a randomized, double-blind, multicenter study. Hypertens Res 45(5):824–833 Yandrapalli S, Khan MH, Rochlani Y, Aronow WS (2018) Sacubitril/valsartan in cardiovascular disease: evidence to date and place in therapy. Ther Adv Cardiovasc Dis 12(8):217–231 Berardi C, Braunwald E, Morrow DA, Mulder HS, Duffy CI, O’Brien TX, Ambrosy AP, Chakraborty H, Velazquez EJ, DeVore AD, Investigators PIONEER-HF (2020) Angiotensin-neprilysin inhibition in black Americans: data from the PIONEER-HF trial. Heart Failure 8(10):859–866 Silva MVBD, Sousa Júnior CPD, Silva HVCD, Santos VMD, Feijao FIM, Bernardino ADO, Melo JACRTD (2022) Evaluation of the cardioprotective and antihypertensive effect of AVE 0991 in normotensive and hypertensive rats. Revista da Associação Médica Brasileira Ma Y, Huang H, Jiang J, Wu L, Lin C, Tang A, Dai G, He J, Chen Y (2016) AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress. Biochem Biophys Res Commun 474(4):621–625 McGiff JC, Terragno NA, Malik KU, Lonigro AJ (1972) Release of a prostaglandin E-like substance from canine kidney by bradykinin: comparison with eledoisin. Circ Res 31(1):36–43 McGiff JC, Crowshaw K, Terragno NA, Malik KU, Lonigro AJ (1972) Differential efect of noradrenaline and renal nerve stimulation on vascular resistance in the dog kidney and the release of a prostaglandin e-like substance. Clin Sci 42(2):223–233 Wang J, Liu M, Zhang X, Yang G, Chen L (2018) Physiological and pathophysiological implications of PGE2 and the PGE2 synthases in the kidney. Prostaglandins Other Lipid Mediat 134:1–6 Pfeilschifter J, Schalkwijk C, Briner VA, Van den Bosch H (1993). Cytokine-stimulated secretion of group II phospholipase A2 by rat mesangial cells. Its contribution to arachidonic acid release and prostaglandin synthesis by cultured rat glomerular cells. J Clin Investigat 92(5):2516–2523 Völzke A, Koch A, Zu Heringdorf DM, Huwiler A, Pfeilschifter J (2014) Sphingosine 1-phosphate (S1P) induces COX-2 expression and PGE2 formation via S1P receptor 2 in renal mesangial cells. Molecul Cell Biol Lipids, 1841(1): 11–21 Barutta F, Bellini S, Gruden G (2022) Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci 136(7):493–520 Eschenhagen T (2018) Treatment of hypertension, therapy of heart failure. In: Brunton LL (ed) Goodman & Gilman’s the pharmacological basis of therapeutics, 13th edn. McGraw Hill Companies, Inc. New York. Laurent S (2017) Antihypertensive drugs. Pharmacol Res 124:116–125 Liu Y, Hitomi H, Diah S, Deguchi K, Mori H, Masaki T, Nakano D, Kobori H, Nishiyama A (2013) Roles of Na+/H+ exchanger type 1 and intracellular pH in angiotensin II-induced reactive oxygen species generation and podocyte apoptosis. J Pharmacol Sci 122(3):176–183 Li XC, Zhu D, Chen X, Zheng X, Zhao C, Zhang J, Soleimani M, Rubera I, Tauc M, Zhou X, Zhuo JL (2019) Proximal tubule-specific deletion of the NHE3 (Na+/H+ exchanger 3) in the kidney attenuates Ang II (angiotensin II)-induced hypertension in mice. Hypertension 74(3):526–535 Su M, Dhoopun AR, Yuan Y, Huang S, Zhu C, Ding G, Liu B, Yang T, Zhang A (2013) Mitochondrial dysfunction is an early event in aldosterone-induced podocyte injury. Am J Physiol-Renal Physiol 305(4):F520–F531 Baylis C (2008) Nitric oxide deficiency in chronic kidney disease. Am J Physiol-Renal Physiol 294(1):F1–F9 Lei C, Berra L, Rezoagli E, Yu B, Dong H, Yu S, Hou L, Chen M, Chen W, Wang H, Zheng Q (2018) Nitric oxide decreases acute kidney injury and stage 3 chronic kidney disease after cardiac surgery. Am J Respir Crit Care Med 198(10):1279–1287 Tai YH, Wu HL, Su FW, Chang KY, Huang CH, Tsou MY, Lu CC (2019) The effect of high-dose nitroglycerin on the cerebral saturation and renal function in cardiac surgery: a propensity score analysis. J Chin Med Assoc 82(2):120–125 Smeijer JD, Kohan DE, Webb DJ, Dhaun N, Heerspink HJ (2021) Endothelin receptor antagonists for the treatment of diabetic and nondiabetic chronic kidney disease. Curr Opin Nephrol Hypertens 30(4):456–465 Flack JM, Adekola B (2020) Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc Med 30(3):160–164 96. Ding W, Li X, Wu W, He H, Li Y, Gao L, Gan L, Wang M, Ou S, Liu J (2018) Aliskiren inhibits angiotensin II/angiotensin 1–7 (Ang II/Ang1–7) signal pathway in rats with diabetic nephropathy. Chinese J Cellular Molecul Immunol 34(10):891–895 Angeli F, Reboldi G, Poltronieri C, Angeli E, De Filippo V, Crocetti A, Bartolini C, D’Ambrosio C, Verdecchia P (2014) Efficacy and safety profile of aliskiren: practical implications for clinicians. Curr Drug Saf 9(2):106–117 Zhang L, Xue S, Hou J, Chen G, Xu ZG (2020) Endothelin receptor antagonists for the treatment of diabetic nephropathy: a meta-analysis and systematic review. World J Diabetes 11(11):553 Tsai YC, Tsai HJ, Lee CS, Chiu YW, Kuo HT, Lee SC, Chen TH, Kuo MC (2018) The interaction between N-terminal pro-brain natriuretic peptide and fluid status in adverse clinical outcomes of late stages of chronic kidney disease. PLoS ONE 13(8):e0202733 Yang CC, Chen YT, Chen CH, Li YC, Shao PL, Huang TH, Chen YL, Sun CK, Yip HK (2019) The therapeutic impact of entresto on protecting against cardiorenal syndrome-associated renal damage in rats on high protein diet. Biomed Pharmacother 116:108954 Bascands JL, Pecher C, Rouaud S, Emond C, Tack JL, Bastie MJ, Burch R, Regoli D, Girolami JP (1993) Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am J Physiol-Renal Physiol 264(3):F548–F556 Dong JI, Ding LI, Wang L, Yang Z, Wang Y, Zang Y, Cao X, Tang L (2021) Effects of bradykinin on proliferation, apoptosis, and cycle of glomerular mesangial cells via the TGF-ß1/Smad signaling pathway. Turk J Biol 45(1):17–25 Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37(1):67–119 Bazan IS, Fares WH (2015) Pulmonary hypertension: diagnostic and therapeutic challenges. Therapeut Clin Risk Manage, pp 1221–1233 Lahm T, Hess E, Barón AE, Maddox TM, Plomondon ME, Choudhary G, Maron BA, Zamanian RT, Leary PJ (2021) Renin-angiotensin-aldosterone system inhibitor use and mortality in pulmonary hypertension: insights from the Veterans Affairs Clinical Assessment Reporting and Tracking Database. Chest 159(4):1586–1597 Costanzo MR, Stevenson LW, Adamson PB, Desai AS, Heywood JT, Bourge RC, Bauman J, Abraham WT (2016) Interventions linked to decreased heart failure hospitalizations during ambulatory pulmonary artery pressure monitoring. JACC Heart Failure 4(5): 333–344 Desai AS, Heywood JT, Rathman L, Abraham WT, Adamson P, Brett ME, Costanzo MR, Lamba S, Raval N, Shavelle D, Sood P, Stevenson W (2021) Early reduction in ambulatory pulmonary artery pressures after initiation of sacubitril/valsartan. Circulation Heart Failure 14(7): e008212 Hemnes AR, Rathinasabapathy A, Austin EA, Brittain EL, Carrier EJ, Chen X, Fessel JP, Fike CD, Fong P, Fortune N, Gerszten RE (2018) A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. Eur Respirat J 51(6) Hall DA, Hanrott K, Badorrek P, Berliner D, Budd DC, Eames R, Powley WM, Hewens D, Siederer S, Lazaar AL, Cahn A, Hohlfeld JM (2021) Effects of recombinant human angiotensin-converting enzyme 2 on response to acute hypoxia and exercise: a randomised, Placebo-Controlled Study. Pulmonary Therapy 7:487–501 Schilling T, Bergmann A (2022) Modulating the pulmonary circulation: nitric oxide and beyond. In Cohen's comprehensive thoracic anesthesia. Elsevier, pp 105–114 Ziegler JW, Ivy DD, Kinsella JP, Abman SH (1995) The role of nitric oxide, endothelin, and prostaglandins in the transition of the pulmonary circulation. Clin Perinatol 22(2):387–403 Wang L, Zhu L, Wu Y, Li Q, Liu H (2021) Riociguat therapy for pulmonary hypertension: a systematic review and meta-analysis. Ann Palliat Med 10(10):11117–11128 Zhao R, Jiang Y (2019) Influence of riociguat treatment on pulmonary arterial hypertension. Herz 44(7):637–643 Velvis H, Moore P, Heymann MA (1991) Prostaglandin inhibition prevents the fall in pulmonary vascular resistance as a result of rhythmic distension of the lungs in fetal lambs. Pediatr Res 30(1):62–68 Sitbon O, Noordegraaf AV (2017) Epoprostenol and pulmonary arterial hypertension: 20 years of clinical experience. Eur Respirat Rev 26(143) Zeineh NS, Bachman TN, El-Haddad H, Champion HC (2014) Effects of acute intravenous iloprost on right ventricular hemodynamics in rats with chronic pulmonary hypertension. Pulmon Circulat 4(4):612–618 Humbert M, Sitbon O, Simonneau G (2004) Treatment of pulmonary arterial hypertension. N Engl J Med 351(14):1425–1436 Narine L, Hague LK, Walker JH, Vicente C, Schilz R, Desjardins O, Einarson TR, Iskedjian M (2005) Cost-minimization analysis of treprostinil vs epoprostenol as an alternate to oral therapy non-responders for the treatment of pulmonary arterial hypertension. Curr Med Res Opin 21(12):2007–2016 Waxman A, Restrepo-Jaramillo R, Thenappan T, Ravichandran A, Engel P, Bajwa A, Allen R, Feldman J, Argula R, Smith P, Rollins K (2021) Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N Engl J Med 384(4):325–334 Takatsuki S, Nakayama T, Shimizu Y, Kawai R, Matsuura H (2022) Clinical efficacy and safety of selexipag in children and young adults with idiopathic and heritable pulmonary arterial hypertension. Cardiol Young 33(2):196–200 Sabri MR, Beheshtian E (2014) Comparison of the therapeutic and side effects of tadalafil and sildenafil in children and adolescents with pulmonary arterial hypertension. Pediatr Cardiol 35:699–704 Lichtblau M, Harzheim D, Ehlken N, Marra A, Pinado FP, Grünig E, Egenlauf B (2015) Safety and long-term efficacy of transition from sildenafil to tadalafil due to side effects in patients with pulmonary arterial hypertension. Lung 193:105–112 Coral-Alvarado P, Quintana G, Garces MF, Cepeda LA, Caminos JE, Rondon F, Iglesias-Gamarra A, Restrepo JF (2009) Potential biomarkers for detecting pulmonary arterial hypertension in patients with systemic sclerosis. Rheumatol Int 29:1017–1024 Hajra A, Safiriyu I, Balasubramanian P, Gupta R, Chowdhury S, Prasad AJ, Kumar A, Kumar D, Khan B, Bilberry RS, Sarkar A, Malik P, Aronow WS (2022) Recent advances and future prospects of treatment of pulmonary hypertension. Current Problem Cardiol 101236. Collum SD, Amione-Guerra J, Cruz-Solbes AS, DiFrancesco A, Hernandez AM, Hanmandlu A, Youker K, Guha A, Karmouty-Quintana H (2017) Pulmonary hypertension associated with idiopathic pulmonary fibrosis: current and future perspectives. Can Respirat J Jankov RP, Kantores C, Belcastro R, Yi M, Tanswell AK (2006) Endothelin-1 inhibits apoptosis of pulmonary arterial smooth muscle in the neonatal rat. Pediatr Res 60(3):245–251 Zhao Q, Guo N, Chen J, Parks D, Tian Z (2022) Comparative assessment of efficacy and safety of ambrisentan and bosentan in patients with pulmonary arterial hypertension: a meta-analysis. J Clin Pharm Ther 47(2):146–156 Galiè N, Barberà JA, Frost AE, Ghofrani HA, Hoeper MM, McLaughlin VV, Peacock AJ, Simonneau G, Vachiery JL, Grünig E, Oudiz RJ (2015) Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med 373(9):834–844 Weatherald J, Thakrar MV, Varughese RA, Kularatne M, Liu J, Harper L, Kiamanesh O, Fine N, Orlikow E, Nwaroh C, Thornton C (2022) Upfront riociguat and ambrisentan combination therapy for newly diagnosed pulmonary arterial hypertension: a prospective open-label trial. J Heart Lung Transplant 41(5):563–567 Bedan M, Grimm D, Wehland M, Simonsen U, Infanger M, Krüger M (2018) A focus on macitentan in the treatment of pulmonary arterial hypertension. Basic Clin Pharmacol Toxicol 123(2):103–113 Taraseviciene-Stewart L, Scerbavicius R, Stewart JM, Gera L, Demura Y, Cool C, Kasper M, Voelkel NF (2005) Treatment of severe pulmonary hypertension: a bradykinin receptor 2 agonist B9972 causes reduction of pulmonary artery pressure and right ventricular hypertrophy. Peptides 26(8):1292–1300 Taraseviciene-Stewart L, Gera L, Hirth P, Voelkel NF, Tuder RM, Stewart JM (2002) A bradykinin antagonist and a caspase inhibitor prevent severe pulmonary hypertension in a rat model. Can J Physiol Pharmacol 80(4):269–274 Singh S, Sharma S (2022) High-output cardiac failure. In: StatPearls. StatPearls Publishing. Rockey DC, Fouassier L, Chung JJ, Carayon A, Vallée P, Rey C, Housset C (1998) Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology 27(2):472–480 Pinzani M, Milani S, Franco RD, Grappone C, Caligiuri A, Gentilini A, Tosti-Guerra C, Maggi M, Failli P, Ruocco C, Gentilini P (1996) Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology 110(2):534–548 Marsden PA, Brenner BM (1992) Transcriptional regulation of the endothelin-1 gene by TNF-alpha. Am J Physiol Cell Physiol 262(4):C854–C861 Nagasue N, Dhar DK, Yamanoi A, Emi Y, Udagawa J, Yamamoto A, Tachibana M, Kubota H, Kohno H, Harada T (2000) Production and release of endothelin-1 from the gut and spleen in portal hypertension due to cirrhosis. Hepatology 31(5):1107–1114 Hu LS, George J, Wang JH (2013) Current concepts on the role of nitric oxide in portal hypertension. World J Gastroenterol: WJG 19(11):1707 Iwakiri Y, Groszmann RJ (2020) Pathophysiology of portal hypertension. In: Arias M (ed) The liver biology and pathobiology, 6th edn. Wiley Blackwell, New Jersey Ezhilarasan D (2022) Hepatic stellate cells in the injured liver: Perspectives beyond hepatic fibrosis. J Cell Physiol 237(1):436–449 Hsu SJ, Lin TY, Wang SS, Chuang CL, Lee FY, Huang HC, Hsin IF, Lee JY, Lin HC, Lee SD (2016) Endothelin receptor blockers reduce shunting and angiogenesis in cirrhotic rats. Eur J Clin Invest 46(6):572–580 Gunarathne LS, Rajapaksha IG, Casey S, Qaradakhi T, Zulli A, Rajapaksha H, Trebicka J, Angus PW, Herath CB (2022) Mas-related G protein-coupled receptor type D antagonism improves portal hypertension in cirrhotic rats. Hepatol Commun 6(9):2523–2537 Wiest R, Groszmann RJ (2002) The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology 35(2):478–549 Schwabl P, Brusilovskaya K, Supper P, Bauer D, Königshofer P, Riedl F, Hayden H, Fuchs CD, Stift J, Oberhuber G, Aschauer S (2018) The soluble guanylate cyclase stimulator riociguat reduces fibrogenesis and portal pressure in cirrhotic rats. Sci Rep 8(1):9372 Wisén E, Svennerholm K, Bown LS, Houltz E, Rizell M, Lundin S, Ricksten SE (2018) Vasopressin and nitroglycerin decrease portal and hepatic venous pressure and hepato-splanchnic blood flow. Acta Anaesthesiol Scand 62(7):953–961 Brusilovskaya K, Königshofer P, Lampach D, Szodl A, Supper P, Bauer D, Beer A, Stift J, Timelthaler G, Oberhuber G, Podesser BK (2020) Soluble guanylyl cyclase stimulation and phosphodiesterase-5 inhibition improve portal hypertension and reduce liver fibrosis in bile duct–ligated rats. United Eur Gastroenterol J 8(10):1174–1185 Kim G, Kim J, Lim YL, Kim MY, Baik SK (2016) Renin–angiotensin system inhibitors and fibrosis in chronic liver disease: a systematic review. Hep Intl 10:819–828 Zhang X, Wong GLH, Yip TCF, Tse YK, Liang LY, Hui VWK, Lin H, Li GL, Lai JCT, Chan HLY, Wong VWS (2022) Angiotensin-converting enzyme inhibitors prevent liver-related events in nonalcoholic fatty liver disease. Hepatology 76(2):469–482 González-Abraldes J, Albillos A, Bañares R, Del Arbol LR, Moitinho E, Rodríguez C, González M, Escorsell A, García-Pagán JC, Bosch J (2001) Randomized comparison of long-term losartan versus propranolol in lowering portal pressure in cirrhosis. Gastroenterology 121(2):382–388 Agasti AK, Mahajan AU, Phadke AY, Nathani PJ, Sawant P (2013) Comparative randomized study on efficacy of losartan versus propranolol in lowering portal pressure in decompensated chronic liver disease. J Dig Dis 14(5):266–271 Kim JH, Kim JM, Cho YZ, Na JH, Kim HS, Kim HA, Kang HW, Baik SK, Kwon SO, Cha SH, Kim YJ, Kim MY (2014) Effects of candesartan and propranolol combination therapy versus propranolol monotherapy in reducing portal hypertension. Clin Mol Hepatol 20(4):376 Sookoian S, Fernández MA, Castaño G (2005) Effects of six months losartan administration on liver fibrosis in chronic hepatitis C patients: a pilot study. World J Gastroenterol 11(48):7560 Hsu SJ, Huang HC, Chuang CL, Chang CC, Hou MC, Lee FY, Lee SD (2020) Dual angiotensin receptor and neprilysin inhibitor ameliorates portal hypertension in portal hypertensive rats. Pharmaceutics 12(4):320 Casey S, Schierwagen R, Mak KY, Klein S, Uschner F, Jansen C, Praktiknjo M, Meyer C, Thomas D, Herath C, Jones R, Trebicka J, Angus P (2019) Activation of the alternate renin-angiotensin system correlates with the clinical status in human cirrhosis and corrects post liver transplantation. J Clin Med 8(4):419 Lubel JS, Herath CB, Burrell LM, Angus PW (2008) Liver disease and the renin–angiotensin system: recent discoveries and clinical implications. J Gastroenterol Hepatol 23(9):1327–1338 Klein S, Herath CB, Schierwagen R, Grace J, Haltenhof T, Uschner FE, Strassburg CP, Sauerbruch T, Walther T, Angus PW, Trebicka J (2015) Hemodynamic effects of the non-peptidic angiotensin-(1–7) agonist AVE0991 in liver cirrhosis. PLoS ONE 10(9):e0138732 Iwahashi N, Horii M, Tamura K, Kimura K (2022) Worsening dyspnea in patients with idiopathic portal hypertension. Chest 161(4):e245–e248 Gao JH, Wen SL, Feng S, Yang WJ, Lu YY, Tong H, Liu R, Tang SH, Huang ZY, Tang YM, Yang JH (2016) Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats. Angiogenesis 19:501–511 Feng S, Tong H, Gao JH, Tang SH, Yang WJ, Wang GM, Zhou HY, Wen SL (2021) Anti-inflammation treatment for protection of hepatocytes and amelioration of hepatic fibrosis in rats. Exp Ther Med 22(5):1–11 Grimaldi A, Brighi C, Peruzzi G, Ragozzino D, Bonanni V, Limatola C, Ruocco G, Di Angelantonio S (2018) Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis 9(6):685 Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464 Tang X, Li Z, Zhang W, Yao Z (2019) Nitric oxide might be an inducing factor in cognitive impairment in Alzheimer’s disease via downregulating the monocarboxylate transporter 1. Nitric Oxide 91:35–41 Nathan C, Calingasan N, Nezezon J, Ding A, Lucia MS, La Perle K, Fuortes M, Lin M, Ehrt S, Kwon NS, Chen J (2005) Protection from Alzheimer’s-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J Exp Med 202(9):1163–1169 Liu L, Xu H, Ding S, Wang D, Song G, Huang X (2019) Phosphodiesterase 5 inhibitors as novel agents for the treatment of Alzheimer’s disease. Brain Res Bull 153:223–231 Fang J, Zhang P, Zhou Y, Chiang CW, Tan J, Hou Y, Stauffer S, Li L, Pieper AA, Cummings J, Cheng F (2021) Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer’s disease. Nature Aging 1(12):1175–1188 Al-Amin MM, Hasan SN, Alam T, Hasan AT, Hossain I, Didar RR, Alam MA, Rahman MM (2014) Tadalafil enhances working memory, and reduces hippocampal oxidative stress in both young and aged mice. Eur J Pharmacol 745:84–90 Michinaga S, Koyama Y (2019) Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage. Int J Mol Sci 20(3):571 Sharma S, Behl T, Kumar A, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S (2021) Targeting endothelin in Alzheimer’s disease: a promising therapeutic approach. BioMed Research Int Michinaga S, Inoue A, Yamamoto H, Ryu R, Inoue A, Mizuguchi H, Koyama Y (2020) Endothelin receptor antagonists alleviate blood-brain barrier disruption and cerebral edema in a mouse model of traumatic brain injury: a comparison between bosentan and ambrisentan. Neuropharmacology 175:108182 Eckman EA, Reed DK, Eckman CB (2001) Degradation of the Alzheimer’s amyloid β peptide by endothelin-converting enzyme. J Biol Chem 276(27):24540–24548 Koyama Y, Endothelin ETB (2021) Receptor-mediated astrocytic activation: pathological roles in brain disorders. Int J Mol Sci 22(9):4333 Hemming ML, Selkoe DJ (2005) Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J Biol Chem 280(45):37644–37650 Saido TC (2013) Metabolism of amyloid β peptide and pathogenesis of Alzheimer’s disease. Proc Jpn Acad Ser B 89(7):321–339 Deng Z, Jiang J, Wang J, Pan D, Zhu Y, Li H, Zhang X, Liu X, Xu Y, Li Y, Tang Y (2022) Angiotensin receptor blockers are associated with a lower risk of progression from mild cognitive impairment to dementia. Hypertension 79(10):2159–2169 Brown JD, Smith SM, Strotmeyer ES, Kritchevsky SB, Gill TM, Blair SN, Fielding RA, Buford TW, Pahor M, Manini TM (2019) Comparative effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on response to a physical activity intervention in older adults: results from the Lifestyle Interventions and Independence for Elders Study. J Gerontol Ser A 75(5):1010–1016 Clark MA, Tran H, Nguyen C (2011) Angiotensin III stimulates ERK1/2 mitogen-activated protein kinases and astrocyte growth in cultured rat astrocytes. Neuropeptides 45(5):329–335 Mi X, Cao Y, Li Y, Li Y, Hong J, He J, Liang Y, Yang N, Liu T, Han D, Kuang C (2021) The Non-peptide Angiotensin-(1–7) Mimic AVE 0991 attenuates delayed neurocognitive recovery after laparotomy by reducing neuroinflammation and restoring blood-brain barrier integrity in aged rats. Front Aging Neurosci 13:624387 Efficacy and Safety of Sacubitril/Valsartan Compared to Valsartan on Cognitive Function in Patients With Chronic Heart Failure and Preserved Ejection Fraction. American College of Cardiology. https://www.acc.org/Latest-in-Cardiology/Clinical-Trials/2022/08/25/03/38/PERSPECTIVE. Accessed 1 Nov 2022. Cannon JA, Shen L, Jhund PS, Kristensen SL, Købe L, Chen F, Gong J, Lefkowitz MP, Rouleau JL, Shi VC, Swedberg K (2017) Dementia-related adverse events in PARADIGM-HF and other trials in heart failure with reduced ejection fraction. Eur J Heart Fail 19(1):129–137 Grewal P, Yoo J, Myserlis EP, Skopicki HA, Kalogeropoulos A (2022) Sacubitril-valsartan and 5-year incidence of neurocognitive diagnoses. J Cardiac Fail 28(5):S11 Kerola T, Nieminen T, Hartikainen S, Sulkava R, Vuolteenaho O, Kettunen R (2010) B-type natriuretic peptide as a predictor of declining cognitive function and dementia—a cohort study of an elderly general population with a 5-year follow-up. Ann Med 42(3):207–215 Daniels LB, Laughlin GA, Kritz-Silverstein D, Clopton P, Chen WC, Maisel AS, Barrett-Connor E (2011) Elevated natriuretic peptide levels and cognitive function in community-dwelling older adults. Am J Med 124(7):670-e1 Famitafreshi H, Karimian M (2020) Prostaglandins as the agents that modulate the course of brain disorders. Degenerat Neurol Neuromuscul Disease, pp 1–13 Thomas MH, Olivier JL (2016) Arachidonic acid in Alzheimer's disease. J Neurol Neuromed 1(9) ADAPT Research Group (2008) Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 65(7):896 Sharma P, Sharma D, Sharma L (2021) Exploring NSAIDs as anti-amyloidal agents: a drug repurposing approach to treat Alzheimer’s disease. Alzheimers Dement 17:e058504 Abdel-Aal RA, Hussein OA, Elsaady RG, Abdelzaher L (2021) The potential role of naproxen in promoting rivastigmine effect against aluminum chloride-induced Alzheimer-like model in rats Mugisho OO, Robilliard LD, Nicholson LF, Graham ES, O’Carroll SJ (2020) Bradykinin receptor-1 activation induces inflammation and increases the permeability of human brain microvascular endothelial cells. Cell Biol Int 44(1):343–351 Zhang Q, Tan J, Wan L, Chen C, Wu B, Ke X, Wu R, Ran X (2021) Increase in blood–brain barrier permeability is modulated by tissue kallikrein via activation of bradykinin B1 and B2 receptor-mediated signaling. J Inflamm Res 14:4283 Petrella C, Ciotti MT, Nisticò R, Piccinin S, Calissano P, Capsoni S, Mercanti D, Cavallaro S, Possenti R, Severini C (2020) Involvement of bradykinin receptor 2 in nerve growth factor neuroprotective activity. Cells 9(12): 2651 Singh PK, Chen ZL, Ghosh D, Strickland S, Norris EH (2020) Increased plasma bradykinin level is associated with cognitive impairment in Alzheimer’s patients. Neurobiol Dis 139:104833