First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea

Genomics, Proteomics & Bioinformatics - Tập 13 - Trang 304-309 - 2015
André Antunes1, Intikhab Alam1, Marta Filipa Simões1, Camille Daniels2, Ari J.S. Ferreira3, Rania Siam3, Hamza El-Dorry3, Vladimir B. Bajic1
1Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
2Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
3Biology Department, American University in Cairo, New Cairo 11835, Egypt

Tài liệu tham khảo

Smetacek, 2002, The ocean’s veil, Nature, 419, 565, 10.1038/419565a Mizuno, 2013, Expanding the marine virosphere using metagenomics, PLoS Genet, 9, e1003987, 10.1371/journal.pgen.1003987 Sabet, 2012, Halophilic viruses, 81 Suttle, 2005, Viruses in the sea, Nature, 437, 356, 10.1038/nature04160 Breitbart, 2012, Marine viruses: truth or dare, Ann Rev Mar Sci, 4, 425, 10.1146/annurev-marine-120709-142805 Rodriguez-Valera, 2009, Explaining microbial population genomics through phage predation, Nat Rev Microbiol, 7, 828, 10.1038/nrmicro2235 Sabehi, 2012, A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans, Proc Natl Acad Sci U S A, 109, 2037, 10.1073/pnas.1115467109 Luk, 2014, Viruses of Haloarchaea, Life (Basel), 4, 681 Weinbauer, 2004, Ecology of prokaryotic viruses, FEMS Microbiol Rev, 28, 127, 10.1016/j.femsre.2003.08.001 Brum, 2015, Rising to the challenge: accelerated pace of discovery transforms marine virology, Nat Rev Microbiol, 13, 147, 10.1038/nrmicro3404 Edwards, 2005, Viral metagenomics, Nat Rev Microbiol, 3, 504, 10.1038/nrmicro1163 Mokili, 2012, Metagenomics and future perspectives in virus discovery, Curr Opin Virol, 2, 63, 10.1016/j.coviro.2011.12.004 Rodriguez-Brito, 2010, Viral and microbial community dynamics in four aquatic environments, ISME J, 4, 739, 10.1038/ismej.2010.1 Narasingarao, 2012, De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities, ISME J, 6, 81, 10.1038/ismej.2011.78 Santos, 2012, Culture-independent approaches for studying viruses from hypersaline environments, Appl Environ Microbiol, 78, 1635, 10.1128/AEM.07175-11 Antunes, 2011, Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes, Environ Microbiol Rep, 3, 416, 10.1111/j.1758-2229.2011.00264.x Antunes, 2003, Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine–seawater interface of the Shaban Deep, Red Sea, Extremophiles, 7, 29, 10.1007/s00792-002-0292-5 Antunes, 2007, Marinobacter salsuginis sp. nov., a novel species from the brine–seawater interface of the Shaban Deep, Red Sea, Int J Syst Evol Microbiol, 57, 1035, 10.1099/ijs.0.64862-0 Antunes, 2008, Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus, Int J Syst Evol Microbiol, 58, 215, 10.1099/ijs.0.65316-0 Antunes, 2008, A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled Deep of the Red Sea, J Bacteriol, 190, 3580, 10.1128/JB.01860-07 Fiala, 1990, Flexistipes sinusarabici, a novel genus and species of eubacteria occurring in the Atlantis II Deep brines of the Red Sea, Arch Microbiol, 154, 120, 10.1007/BF00423320 Abdallah, 2014, Aerobic methanotrophic communities at the Red Sea brine–seawater interface, Front Microbiol, 5, 487, 10.3389/fmicb.2014.00487 Antunes, 2011, Genome sequence of Halorhabdus tiamatea, the first archaeon isolated from a deep-sea anoxic brine lake, J Bacteriol, 193, 4553, 10.1128/JB.05462-11 Antunes, 2011, Genome sequence of Salinisphaera shabanensis, a gammaproteobacterium from the harsh, variable environment of the brine–seawater interface of the Shaban Deep in the Red Sea, J Bacteriol, 193, 4555, 10.1128/JB.05459-11 Antunes, 2011, Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake, J Bacteriol, 193, 4551, 10.1128/JB.05461-11 Bougouffa, 2013, Distinctive microbial community structure in highly stratified deep-sea brine water columns, Appl Environ Microbiol, 79, 3425, 10.1128/AEM.00254-13 Eder, 2001, Microbial diversity of the brine–seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods, Appl Environ Microbiol, 67, 3077, 10.1128/AEM.67.7.3077-3085.2001 Eder, 1999, Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea, Arch Microbiol, 172, 213, 10.1007/s002030050762 Eder, 2002, Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine–seawater interface of the Shaban Deep, Red Sea, Environ Microbiol, 4, 758, 10.1046/j.1462-2920.2002.00351.x Guan, 2015, Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea, Res Microbiol, 166, 688, 10.1016/j.resmic.2015.07.002 Siam, 2012, Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and Discovery Deep brine pools, PLoS One, 7, e42872, 10.1371/journal.pone.0042872 Wang, 2011, Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea, ISME J, 5, 1652, 10.1038/ismej.2011.42 Wang, 2013, Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent Red Sea brine pools, Sci Rep, 3, 1748, 10.1038/srep01748 Winter, 2014, Comparison of deep-water viromes from the Atlantic Ocean and the Mediterranean Sea, PLoS One, 9, e100600, 10.1371/journal.pone.0100600 Wommack, 2000, Virioplankton: viruses in aquatic ecosystems, Microbiol Mol Biol Rev, 64, 69, 10.1128/MMBR.64.1.69-114.2000 Borin, 2008, DNA is preserved and maintains transforming potential after contact with brines of the deep anoxic hypersaline lakes of the Eastern Mediterranean Sea, Saline Systems, 4, 10, 10.1186/1746-1448-4-10 Corinaldesi, 2014, Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins, Proc Biol Sci, 281, 20133299, 10.1098/rspb.2013.3299 Danovaro, 2005, Viruses, prokaryotes and DNA in the sediments of a deep-hypersaline anoxic basin (DHAB) of the Mediterranean Sea, Environ Microbiol, 7, 586, 10.1111/j.1462-2920.2005.00727.x Garcia-Heredia, 2012, Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses, PLoS One, 7, e33802, 10.1371/journal.pone.0033802 Daffonchio, 2006, Stratified prokaryote network in the oxic–anoxic transition of a deep-sea halocline, Nature, 440, 203, 10.1038/nature04418 Holmfeldt, 2013, Twelve previously unknown phage genera are ubiquitous in global oceans, Proc Natl Acad Sci U S A, 110, 12798, 10.1073/pnas.1305956110