Virtual Screening of Orally Active Lead Compounds of Pearl Millet and Their Structural Activity Against Target Protein of COVID-19

Russian Journal of Bioorganic Chemistry - Tập 49 - Trang S53-S70 - 2024
Adarsh Kumar Shukla1, Ashwani Kumar1
1Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Jant-Pali, Haryana, India

Tóm tắt

RNA-dependent RNA polymerase protein (target protein of COVID-19) caused the highly mutated coronavirus that was the reason for the global pandemic. Bioactive compounds of pearl millet were screened out several theoretical rules after that molecular docking and normal mode analysis were performed to check the most prominent inhibitor among the potentially orally active compounds against the therapeutics target COVID-19. ADMET profiling and chemical-protein network were used to check the efficacy, effectivity, safety, and pharmacological relevance of these selected inhibitors. Tannic acid and carotenes were found as non-orally active drug molecules out of 27 bioactive compounds. Luteolin. apigenin, cinnamic acid, syringic acid, p-coumaric acid, sinapic acid, taxifolin, riboflavin, pyridoxin, ferulic acid, caffeic acid, catachin, quercetin, thiamin, folacin have been predicted as potential compounds for oral administration in form of drug, while ascorbic acid, gallic acid, niacin, proto-catechuic acid, gentisic acid, salicylic acid, resorcinol, catechol, pantothenic acid, and vitamin E were predicted less potent candidate. A molecular docking study was performed with the most favorable compounds and it was found that luteolin, apigenin, and quercetin were more effective against the target peptide of COVID-19. Luteolin has a pretty good bindings score (–5.9 kcal/mol) and is predicted to have good and safe pharmacokinetics and pharmacodynamics properties. The protein-chemical network analysis suggested that these compounds also have bioactivity against the 2 common proteins i.e. CYP1A1 and CYP1B1. These findings observed that pearl millet-based food products could be useful for patients suffering from COVID-19 infection.

Tài liệu tham khảo

Kola, I. and Landis, J., Nat. Rev., 2004, vol. 3, pp. 711–715. https://doi.org/10.1038/news070604-1 Merlot, C., Drug Discov. Today, 2010, vol. 15, pp. 16–22. https://doi.org/10.1016/j.drudis.2009.09.010 Eddershaw, P.J., Beresford, A.P., and Bayliss, M.K., Drug Discov. Today, 2000, vol. 5, pp. 409–414. https://doi.org/10.1016/S1359-6446(00)01540-3 Isaiah, O.O., J. Food Sci. Heal., 2020, vol. 6, pp. 80–88. Li, A.P., Drug Discov. Today, 2001, vol. 6, pp. 357–366. https://doi.org/10.1016/S1359-6446(01)01712-3 Thompson, T., Curr. Drug Metab., 2005, vol. 1, pp. 215– 241. https://doi.org/10.2174/1389200003339018 Lagorce, D., Douguet, D., Miteva, M.A., and Villoutreix, B.O., Sci. Rep., 2017, vol. 7, pp. 1–15. https://doi.org/10.1038/srep46277 Pires, D.E.V., Blundell, T.L., and Ascher, D.B., J. Med. Chem., 2015, vol. 58, pp. 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104 Zhang, D.-hai, Wu, K.-lun, Zhang, X., Deng, S., and Peng, B., J. Integr. Med., 2020, vol. 18, pp. 152–158. https://doi.org/10.1016/j.joim.2020.02.005 Shaldam, M.A., Yahya, G., Mohamed, N.H., Mohamed, M. A., and Yahya, A.N., Environ. Sci. Pollut. Res., 2021, vol. 28., pp. 40507–40514. https://doi.org/10.1007/s11356-021-14195-9 Xu, T., Li, S., Sun, Y., Pi, Z., Liu, S., Song, F., and Liu, Z., J. Pharm. Biomed. Anal., 2017, vol. 141, pp. 95–107. https://doi.org/10.1016/j.jpba.2017.04.012 Chandran, U. and Patwardhan, B., J. Ethnopharmacol., 2017, vol. 197, pp. 250–256. https://doi.org/10.1016/j.jep.2016.07.080 Jochheim, F.A., Tegunov, D., Hillen, H.S., Schmitzová, J., Kokic, G., Dienemann, C., and Cramer, P., Commun. Biology, 2021, vol. 4, p. 999. Alrasheid, A.A., Babiker, M.Y., and Awad, T.A., Silico Pharmacol., 2021, vol. 9, pp. 1–7. https://doi.org/10.1007/s40203-020-00073-8 Nambiar, V.S., Sareen, N., Daniel, M., and Gallego, E.B., Funct. Foods Heal. Dis., 2012, vol. 2, pp. 251–264. https://doi.org/10.31989/ffhd.v2i7.85 Kaur, P., Purewal, S.S., Sandhu, K.S., Kaur, M., and Salar, R.K., J. Food Meas. Charact., 2019, vol. 13, pp. 793–806. https://doi.org/10.1007/s11694-018-9992-0 Walters, W.P., Expert Opin. Drug Discov., 2012, vol. 7, pp. 99–107. https://doi.org/10.1517/17460441.2012.648612 Barlow, N., Chalmers, D.K., Williams-Noonan, B.J., Thompson, P.E., and Norton, R.S., ACS Chem. Biology, 2020, vol. 15, pp. 2070–2078. Lipinski, C.A., Drug Discov. Today Technol., 2020, vol. 1, pp. 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007 Ghose, A.K. and Crippen, G.M., J. Chem. Inf. Comput. Sci., 1987, vol. 27, pp. 21–35. https://doi.org/10.1021/ci00053a005 Tian, S., Wang, J., Li, Y., Li, D., Xu, L., and Hou, T., Adv. Drug Deliv. Rev., 2015, vol. 86, pp. 2–10. Jochheim, F.A., Tegunov, D., Hillen, H.S., Schmitzová, J., Kokic, G., Dienemann, C., and Cramer, P., Commun. Biology, 2021, vol. 4, p. 999. Read, R.J., Adams, P.D., Arendall, W.B., Brunger, A.T., Emsley, P., Joosten, R.P., Kleywegt, G.J., Krissinel, E.B., Lütteke, T., Otwinowski, Z., and Perrakis, A., Structure, 2011, vol. 19, pp. 1395–1412. Burley, S.K., Berman, H.M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J.M., Dutta, S., and Feng, Z., Nucleic Acids Res., 2019, vol. 47, pp. D464–D474. Zakaryan, H., Arabyan, E., Oo, A., and Zandi, K., Arch. Virol., 2017, vol. 162. pp. 2539–2551. https://doi.org/10.1007/s00705-017-3417-y Abdelli, I., Hassani, F., Bekkel Brikci, S., and Ghalem, S., J. Biomol. Struct. Dyn., 2021, vol. 39, pp. 3263–3276. https://doi.org/10.1080/07391102.2020.1763199 Joshi, T., Sharma, P., Mathpal, S., Pundir, H., Bhatt, V., and Chandra, S., Eur. Rev. Med. Pharm. Sci., 2020, vol. 24, pp. 4529–4536. https://doi.org/10.26355/eurrev_202004_21036 Xu, J., Gao, L., Liang, H., and Chen, S., Nutrition, 2021, vol. 82, Article ID: 111049. https://doi.org/10.1016/j.nut.2020.111049 Choudhury, A., Das, N.C., Patra, R., and Mukherjee, S., J. Med. Virol., 2021, vol. 93, pp. 2476–2486. https://doi.org/10.1002/jmv.26776 Hasan, A., Paray, B.A., Hussain, A., Qadir, F.A., Attar, F., Aziz, F.M., Sharifi, M., Derakhshankhah, H., Rasti, B., Mehrabi, M., and Shahpasand, K., J. Biomol. Struct. Dynamics, 2021, vol. 39, pp. 3025–3033. Lopéz-Blanco, J.R., Garzón, J.I., and Chacón, P., Bioinformatics, 2011, vol. 27, pp. 2843–2850. https://doi.org/10.1093/bioinformatics/btr497 Patra, P., Ghosh, P., Patra, B.C., and Bhattacharya, M., Int. J. Pept. Res. Ther., 2020, vol. 26. pp. 1687–1697. https://doi.org/10.1007/s10989-019-09978-1 Filimonov, D.A., Rudik, A.V., Dmitriev, A.V., and Poroikov, V.V., Int. J. Mol. Sci., 2020, vol. 21, Article ID: 7492. https://doi.org/10.3390/ijms21207492 Geronikaki, A.A., Lagunin, A.A., Hadjipavlou-Litina, D.I., Eleftheriou, P.T., Filimonov, D.A., Poroikov, V.V., and Saxena, A.K., J. Med. Chem., 2008, vol. 51, pp. 1601–1609. Krasavin, M., Eur. J. Med. Chem., 2015, vol. 97, pp. 525–537. https://doi.org/10.1016/j.ejmech.2014.11.028 Lee, A.Y., Park, W., Kang, T.W., Cha, M.H., and Chun, J.M., J. Ethnopharmacol., 2018, vol. 221, pp. 151–159. https://doi.org/10.1016/j.jep.2018.04.027 Ding, X., Hu, X., Chen, Y., Xie, J., Ying, M., Wang, Y., and Yu, Q., Trends Food Sci. Technol., 2021, vol. 107, pp. 455–465. Ahn, S.I., Sei, Y.J., Park, H.J., Kim, J., Ryu, Y., Choi, J.J., Sung, H.J., MacDonald, T.J., Levey, A.I., and Kim, Y., Nat. Commun., 2020, vol. 11, p. 175. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Deliv. Rev., 1997, vol. 23, pp. 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1 Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., and Tang, A., Nucleic Acids Res., 2014, vol. 42, pp. 1091–1097. https://doi.org/10.1093/nar/gkt1068 Oprea, T.I., J. Comput. Aided Mol. Des., 2000, vol. 14, pp. 251–264. https://doi.org/10.1023/A:1008130001697 Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., and Hopkins, A.L., Nat. Chem., 2012, vol. 4, pp. 90–98. https://doi.org/10.1038/nchem.1243 Ritchie, T.J. and Macdonald, S.J.F., Drug. Discov. Today, 2014, vol. 19, pp. 489–495. https://doi.org/10.1016/j.drudis.2014.01.007 El Mchichi, L., El Aissouq, A., Kasmi, R., Belhassan, A., El-Mernissi, R., Ouammou, A., Lakhlifi, T., and Bouachrine, M., Mater. Today Proc., 2021, vol. 45, pp. 7661–7674. https://doi.org/10.1016/j.matpr.2021.03.152 Sobolev, O.V., Afonine, P.V., Moriarty, N.W., Hekkelman, M.L., Joosten, R.P., Perrakis, A., and Adams, P.D., Structure, 2020, vol. 28, pp. 1249.e2–1258.e2. https://doi.org/10.1016/j.str.2020.08.005 Awan, F.M., Obaid, A., Ikram, A., and Janjua, H.A., Int. J. Mol. Sci., 2017, vol. 18, p. 139. https://doi.org/10.3390/ijms18010139 López-Blanco, J.R., Aliaga, J.I., Quintana-Ortí, E.S., and Chacón, P., Nucleic Acids Res., 2014, vol. 42, pp. 271–276. https://doi.org/10.1093/nar/gku339 Durán-Iturbide, N.A., Díaz-Eufracio, B.I., and MedinaFranco, J.L., ACS Omega, 2020, vol. 5, pp. 16076–16084. https://doi.org/10.1021/acsomega.0c01581