Virtual Screening of Orally Active Lead Compounds of Pearl Millet and Their Structural Activity Against Target Protein of COVID-19
Tóm tắt
RNA-dependent RNA polymerase protein (target protein of COVID-19) caused the highly mutated coronavirus that was the reason for the global pandemic. Bioactive compounds of pearl millet were screened out several theoretical rules after that molecular docking and normal mode analysis were performed to check the most prominent inhibitor among the potentially orally active compounds against the therapeutics target COVID-19. ADMET profiling and chemical-protein network were used to check the efficacy, effectivity, safety, and pharmacological relevance of these selected inhibitors. Tannic acid and carotenes were found as non-orally active drug molecules out of 27 bioactive compounds. Luteolin. apigenin, cinnamic acid, syringic acid, p-coumaric acid, sinapic acid, taxifolin, riboflavin, pyridoxin, ferulic acid, caffeic acid, catachin, quercetin, thiamin, folacin have been predicted as potential compounds for oral administration in form of drug, while ascorbic acid, gallic acid, niacin, proto-catechuic acid, gentisic acid, salicylic acid, resorcinol, catechol, pantothenic acid, and vitamin E were predicted less potent candidate. A molecular docking study was performed with the most favorable compounds and it was found that luteolin, apigenin, and quercetin were more effective against the target peptide of COVID-19. Luteolin has a pretty good bindings score (–5.9 kcal/mol) and is predicted to have good and safe pharmacokinetics and pharmacodynamics properties. The protein-chemical network analysis suggested that these compounds also have bioactivity against the 2 common proteins i.e. CYP1A1 and CYP1B1. These findings observed that pearl millet-based food products could be useful for patients suffering from COVID-19 infection.
Tài liệu tham khảo
Kola, I. and Landis, J., Nat. Rev., 2004, vol. 3, pp. 711–715. https://doi.org/10.1038/news070604-1
Merlot, C., Drug Discov. Today, 2010, vol. 15, pp. 16–22. https://doi.org/10.1016/j.drudis.2009.09.010
Eddershaw, P.J., Beresford, A.P., and Bayliss, M.K., Drug Discov. Today, 2000, vol. 5, pp. 409–414. https://doi.org/10.1016/S1359-6446(00)01540-3
Isaiah, O.O., J. Food Sci. Heal., 2020, vol. 6, pp. 80–88.
Li, A.P., Drug Discov. Today, 2001, vol. 6, pp. 357–366. https://doi.org/10.1016/S1359-6446(01)01712-3
Thompson, T., Curr. Drug Metab., 2005, vol. 1, pp. 215– 241. https://doi.org/10.2174/1389200003339018
Lagorce, D., Douguet, D., Miteva, M.A., and Villoutreix, B.O., Sci. Rep., 2017, vol. 7, pp. 1–15. https://doi.org/10.1038/srep46277
Pires, D.E.V., Blundell, T.L., and Ascher, D.B., J. Med. Chem., 2015, vol. 58, pp. 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
Zhang, D.-hai, Wu, K.-lun, Zhang, X., Deng, S., and Peng, B., J. Integr. Med., 2020, vol. 18, pp. 152–158. https://doi.org/10.1016/j.joim.2020.02.005
Shaldam, M.A., Yahya, G., Mohamed, N.H., Mohamed, M. A., and Yahya, A.N., Environ. Sci. Pollut. Res., 2021, vol. 28., pp. 40507–40514. https://doi.org/10.1007/s11356-021-14195-9
Xu, T., Li, S., Sun, Y., Pi, Z., Liu, S., Song, F., and Liu, Z., J. Pharm. Biomed. Anal., 2017, vol. 141, pp. 95–107. https://doi.org/10.1016/j.jpba.2017.04.012
Chandran, U. and Patwardhan, B., J. Ethnopharmacol., 2017, vol. 197, pp. 250–256. https://doi.org/10.1016/j.jep.2016.07.080
Jochheim, F.A., Tegunov, D., Hillen, H.S., Schmitzová, J., Kokic, G., Dienemann, C., and Cramer, P., Commun. Biology, 2021, vol. 4, p. 999.
Alrasheid, A.A., Babiker, M.Y., and Awad, T.A., Silico Pharmacol., 2021, vol. 9, pp. 1–7. https://doi.org/10.1007/s40203-020-00073-8
Nambiar, V.S., Sareen, N., Daniel, M., and Gallego, E.B., Funct. Foods Heal. Dis., 2012, vol. 2, pp. 251–264. https://doi.org/10.31989/ffhd.v2i7.85
Kaur, P., Purewal, S.S., Sandhu, K.S., Kaur, M., and Salar, R.K., J. Food Meas. Charact., 2019, vol. 13, pp. 793–806. https://doi.org/10.1007/s11694-018-9992-0
Walters, W.P., Expert Opin. Drug Discov., 2012, vol. 7, pp. 99–107. https://doi.org/10.1517/17460441.2012.648612
Barlow, N., Chalmers, D.K., Williams-Noonan, B.J., Thompson, P.E., and Norton, R.S., ACS Chem. Biology, 2020, vol. 15, pp. 2070–2078.
Lipinski, C.A., Drug Discov. Today Technol., 2020, vol. 1, pp. 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
Ghose, A.K. and Crippen, G.M., J. Chem. Inf. Comput. Sci., 1987, vol. 27, pp. 21–35. https://doi.org/10.1021/ci00053a005
Tian, S., Wang, J., Li, Y., Li, D., Xu, L., and Hou, T., Adv. Drug Deliv. Rev., 2015, vol. 86, pp. 2–10.
Jochheim, F.A., Tegunov, D., Hillen, H.S., Schmitzová, J., Kokic, G., Dienemann, C., and Cramer, P., Commun. Biology, 2021, vol. 4, p. 999.
Read, R.J., Adams, P.D., Arendall, W.B., Brunger, A.T., Emsley, P., Joosten, R.P., Kleywegt, G.J., Krissinel, E.B., Lütteke, T., Otwinowski, Z., and Perrakis, A., Structure, 2011, vol. 19, pp. 1395–1412.
Burley, S.K., Berman, H.M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J.M., Dutta, S., and Feng, Z., Nucleic Acids Res., 2019, vol. 47, pp. D464–D474.
Zakaryan, H., Arabyan, E., Oo, A., and Zandi, K., Arch. Virol., 2017, vol. 162. pp. 2539–2551. https://doi.org/10.1007/s00705-017-3417-y
Abdelli, I., Hassani, F., Bekkel Brikci, S., and Ghalem, S., J. Biomol. Struct. Dyn., 2021, vol. 39, pp. 3263–3276. https://doi.org/10.1080/07391102.2020.1763199
Joshi, T., Sharma, P., Mathpal, S., Pundir, H., Bhatt, V., and Chandra, S., Eur. Rev. Med. Pharm. Sci., 2020, vol. 24, pp. 4529–4536. https://doi.org/10.26355/eurrev_202004_21036
Xu, J., Gao, L., Liang, H., and Chen, S., Nutrition, 2021, vol. 82, Article ID: 111049. https://doi.org/10.1016/j.nut.2020.111049
Choudhury, A., Das, N.C., Patra, R., and Mukherjee, S., J. Med. Virol., 2021, vol. 93, pp. 2476–2486. https://doi.org/10.1002/jmv.26776
Hasan, A., Paray, B.A., Hussain, A., Qadir, F.A., Attar, F., Aziz, F.M., Sharifi, M., Derakhshankhah, H., Rasti, B., Mehrabi, M., and Shahpasand, K., J. Biomol. Struct. Dynamics, 2021, vol. 39, pp. 3025–3033.
Lopéz-Blanco, J.R., Garzón, J.I., and Chacón, P., Bioinformatics, 2011, vol. 27, pp. 2843–2850. https://doi.org/10.1093/bioinformatics/btr497
Patra, P., Ghosh, P., Patra, B.C., and Bhattacharya, M., Int. J. Pept. Res. Ther., 2020, vol. 26. pp. 1687–1697. https://doi.org/10.1007/s10989-019-09978-1
Filimonov, D.A., Rudik, A.V., Dmitriev, A.V., and Poroikov, V.V., Int. J. Mol. Sci., 2020, vol. 21, Article ID: 7492. https://doi.org/10.3390/ijms21207492
Geronikaki, A.A., Lagunin, A.A., Hadjipavlou-Litina, D.I., Eleftheriou, P.T., Filimonov, D.A., Poroikov, V.V., and Saxena, A.K., J. Med. Chem., 2008, vol. 51, pp. 1601–1609.
Krasavin, M., Eur. J. Med. Chem., 2015, vol. 97, pp. 525–537. https://doi.org/10.1016/j.ejmech.2014.11.028
Lee, A.Y., Park, W., Kang, T.W., Cha, M.H., and Chun, J.M., J. Ethnopharmacol., 2018, vol. 221, pp. 151–159. https://doi.org/10.1016/j.jep.2018.04.027
Ding, X., Hu, X., Chen, Y., Xie, J., Ying, M., Wang, Y., and Yu, Q., Trends Food Sci. Technol., 2021, vol. 107, pp. 455–465.
Ahn, S.I., Sei, Y.J., Park, H.J., Kim, J., Ryu, Y., Choi, J.J., Sung, H.J., MacDonald, T.J., Levey, A.I., and Kim, Y., Nat. Commun., 2020, vol. 11, p. 175.
Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Deliv. Rev., 1997, vol. 23, pp. 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., and Tang, A., Nucleic Acids Res., 2014, vol. 42, pp. 1091–1097. https://doi.org/10.1093/nar/gkt1068
Oprea, T.I., J. Comput. Aided Mol. Des., 2000, vol. 14, pp. 251–264. https://doi.org/10.1023/A:1008130001697
Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., and Hopkins, A.L., Nat. Chem., 2012, vol. 4, pp. 90–98. https://doi.org/10.1038/nchem.1243
Ritchie, T.J. and Macdonald, S.J.F., Drug. Discov. Today, 2014, vol. 19, pp. 489–495. https://doi.org/10.1016/j.drudis.2014.01.007
El Mchichi, L., El Aissouq, A., Kasmi, R., Belhassan, A., El-Mernissi, R., Ouammou, A., Lakhlifi, T., and Bouachrine, M., Mater. Today Proc., 2021, vol. 45, pp. 7661–7674. https://doi.org/10.1016/j.matpr.2021.03.152
Sobolev, O.V., Afonine, P.V., Moriarty, N.W., Hekkelman, M.L., Joosten, R.P., Perrakis, A., and Adams, P.D., Structure, 2020, vol. 28, pp. 1249.e2–1258.e2. https://doi.org/10.1016/j.str.2020.08.005
Awan, F.M., Obaid, A., Ikram, A., and Janjua, H.A., Int. J. Mol. Sci., 2017, vol. 18, p. 139. https://doi.org/10.3390/ijms18010139
López-Blanco, J.R., Aliaga, J.I., Quintana-Ortí, E.S., and Chacón, P., Nucleic Acids Res., 2014, vol. 42, pp. 271–276. https://doi.org/10.1093/nar/gku339
Durán-Iturbide, N.A., Díaz-Eufracio, B.I., and MedinaFranco, J.L., ACS Omega, 2020, vol. 5, pp. 16076–16084. https://doi.org/10.1021/acsomega.0c01581