Number needed to treat (NNT) in clinical literature: an appraisal

BMC Medicine - Tập 15 - Trang 1-13 - 2017
Diogo Mendes1,2, Carlos Alves1,2, Francisco Batel-Marques1,2
1AIBILI – Association for Innovation and Biomedical Research on Light and Image, CHAD – Centre for Health Technology Assessment and Drug Research, Azinhaga de Santa Comba, Celas, Coimbra, Portugal
2University of Coimbra, School of Pharmacy, Laboratory of Social Pharmacy and Public Health, Coimbra, Portugal

Tóm tắt

The number needed to treat (NNT) is an absolute effect measure that has been used to assess beneficial and harmful effects of medical interventions. Several methods can be used to calculate NNTs, and they should be applied depending on the different study characteristics, such as the design and type of variable used to measure outcomes. Whether or not the most recommended methods have been applied to calculate NNTs in studies published in the medical literature is yet to be determined. The aim of this study is to assess whether the methods used to calculate NNTs in studies published in medical journals are in line with basic methodological recommendations. The top 25 high-impact factor journals in the “General and/or Internal Medicine” category were screened to identify studies assessing pharmacological interventions and reporting NNTs. Studies were categorized according to their design and the type of variables. NNTs were assessed for completeness (baseline risk, time horizon, and confidence intervals [CIs]). The methods used for calculating NNTs in selected studies were compared to basic methodological recommendations published in the literature. Data were analyzed using descriptive statistics. The search returned 138 citations, of which 51 were selected. Most were meta-analyses (n = 23, 45.1%), followed by clinical trials (n = 17, 33.3%), cohort (n = 9, 17.6%), and case–control studies (n = 2, 3.9%). Binary variables were more common (n = 41, 80.4%) than time-to-event (n = 10, 19.6%) outcomes. Twenty-six studies (51.0%) reported only NNT to benefit (NNTB), 14 (27.5%) reported both NNTB and NNT to harm (NNTH), and 11 (21.6%) reported only NNTH. Baseline risk (n = 37, 72.5%), time horizon (n = 38, 74.5%), and CI (n = 32, 62.7%) for NNTs were not always reported. Basic methodological recommendations to calculate NNTs were not followed in 15 studies (29.4%). The proportion of studies applying non-recommended methods was particularly high for meta-analyses (n = 13, 56.5%). A considerable proportion of studies, particularly meta-analyses, applied methods that are not in line with basic methodological recommendations. Despite their usefulness in assisting clinical decisions, NNTs are uninterpretable if incompletely reported, and they may be misleading if calculating methods are inadequate to study designs and variables under evaluation. Further research is needed to confirm the present findings.

Tài liệu tham khảo

Laupacis A, Sackett DL, Roberts RS. An assessment of clinically useful measures of the consequences of treatment. N Engl J Med. 1988;318(26):1728–33. Cook D, Sackett D. The number needed to treat: a clinically useful measure of treatment effect. BMJ. 1995;310:452–4. McAlister FA. The “number needed to treat” turns 20—and continues to be used and misused. CMAJ. 2008;179(6):549–53. Straus SE, Glasziou P, Richardson WS, Haynes RB. Evidence-based medicine: how to practice and teach it. London: Churchill Livingstone; 2011. Citrome L, Ketter TA. When does a difference make a difference? Interpretation of number needed to treat, number needed to harm, and likelihood to be helped or harmed. Int J Clin Pract. 2013;67(5):407–11. Mt-Isa S, Hallgreen CE, Wang N, et al. IMI-PROTECT benefit-risk participants. Balancing benefit and risk of medicines: a systematic review and classification of available methodologies. Pharmacoepidemiol Drug Saf. 2014;23(7):667–78. Mendes D, Alves C, Batel-Marques F. Number needed to harm in the post-marketing safety evaluation: results for rosiglitazone and pioglitazone. Pharmacoepidemiol Drug Saf. 2015;24(12):1259–70. Mendes D, Alves C, Batel MF. Testing the usefulness of the number needed to treat to be harmed (NNTH) in benefit-risk evaluations: case study with medicines withdrawn from the European market due to safety reasons. Expert Opin Drug Saf. 2016;15(10):1301–12. Altman DG, Schulz KF, Moher D, CONSORT GROUP (Consolidated Standards of Reporting Trials), et al. The revised CONSORT statement for reporting randomized trials: explanation and elaboration. Ann Intern Med. 2001;134(8):663–94. Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. BMJ. For Authors, Resources for Authors, Article Types, Research. bmj.com. http://www.bmj.com/about-bmj/resources-authors/article-types/research. Accessed 13 Oct 2016. Hildebrandt M, Vervölgyi E, Bender R. Calculation of NNTs in RCTs with time-to-event outcomes: a literature review. BMC Med Res Methodol. 2009;9:21. Nuovo J, Melnikow J, Chang D. Reporting number needed to treat and absolute risk reduction in randomized controlled trials. JAMA. 2002;287(21):2813–4. Alonso-Coello P, Carrasco-Labra A, Brignardello-Petersen R, et al. Systematic reviews experience major limitations in reporting absolute effects. J Clin Epidemiol. 2016;72:16–26. Citrome L. Relative vs. absolute measures of benefit and risk: what’s the difference? Acta Psychiatr Scand. 2010;121(2):94–102. Klawiter EC, Cross AH, Naismith RT. The present efficacy of multiple sclerosis therapeutics: is the new 66% just the old 33%? Neurology. 2009;73(12):984–90. Mendes D, Alves C, Batel-Marques F. Benefit-risk of therapies for relapsing-remitting multiple sclerosis: testing the number needed to treat to benefit (NNTB), number needed to treat to harm (NNTH) and the likelihood to be helped or harmed (LHH): a systematic review and meta-analysis. CNS Drugs. 2016;30(10):909–29. McQuay HJ, Moore RA. Using numerical results from systematic reviews in clinical practice. Ann Intern Med. 1997;126(9):712–20. Furukawa TA, Guyatt GH, Griffith LE. Can we individualize the ‘number needed to treat’? An empirical study of summary effect measures in meta-analyses. Int J Epidemiol. 2002;31:72–6. Moore RA, Gavaghan DJ, Edwards JE, et al. Pooling data for number needed to treat: no problems for apples. BMC Med Res Methodol. 2002;2:2. Austin PC, Laupacis A. A tutorial on methods to estimating clinically and policy-meaningful measures of treatment effects in prospective observational studies: a review. Int J Biostat. 2011;7(1):6. Bender R, Blettner M. Calculating the “number needed to be exposed” with adjustment for confounding variables in epidemiological studies. J Clin Epidemiol. 2002;55(5):525–30. Bender R, Kuss O, Hildebrandt M, Gehrmann U. Estimating adjusted NNT measures in logistic regression analysis. Stat Med. 2007;26(30):5586–95. Altman DG. Confidence intervals for the number needed to treat. BMJ. 1998;317(7168):1309–12. Bender R. Number needed to treat (NNT). In: Armitage P, Colton T, editors. Encyclopedia of biostatistics. Chichester: Wiley; 2005. p. 3752–61. Altman DG, Andersen PK. Calculating the number needed to treat for trials where the outcome is time to an event. BMJ. 1999;319(7223):1492–5. Bjerre LM, LeLorier J. Expressing the magnitude of adverse effects in case–control studies: “the number of patients needed to be treated for one additional patient to be harmed”. BMJ. 2000;320(7233):503–6. Bender R, Kromp M, Kiefer C, Sturtz S. Absolute risks rather than incidence rates should be used to estimate the number needed to treat from time-to-event data. J Clin Epidemiol. 2013;66(9):1038–44. Suissa D, Brassard P, Smiechowski B, Suissa S. Number needed to treat is incorrect without proper time-related considerations. J Clin Epidemiol. 2012;65(1):42–6. Suissa S. The number needed to treat: 25 years of trials and tribulations in clinical research. Rambam Maimonides Med J. 2015;30:6(3). Deeks JJ, Higgins JPT, Altman DG. Chapter 9: Analysing data and undertaking meta-analyses. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0. Oxford: The Cochrane Collaboration; 2011. da Costa BR, Rutjes AW, Johnston BC, et al. Methods to convert continuous outcomes into odds ratios of treatment response and numbers needed to treat: meta-epidemiological study. Int J Epidemiol. 2012;41(5):1445–59. Suissa S. Calculation of number needed to treat. N Engl J Med. 2009;361(4):424–5. Stang A, Poole C, Bender R. Common problems related to the use of number needed to treat. J Clin Epidemiol. 2010;63(8):820–5. Cates CJ. Simpson’s paradox and calculation of number needed to treat from meta-analysis. BMC Med Res Methodol. 2002;2:1. Smeeth L, Haines A, Ebrahim S. Numbers needed to treat derived from meta-analyses — sometimes informative, usually misleading. BMJ. 1999;318:1548–51. Thomson-Reuters. Journal citation reports. http://thomsonreuters.com/en/products-services/scholarly-scientific-research/research-management-and-evaluation/journal-citation-reports.html. Accessed 24 Aug 2016. Alves C, Batel-Marques F, Macedo AF. Data sources on drug safety evaluation: a review of recent published meta-analyses. Pharmacoepidemiol Drug Saf. 2012;21(1):21–33. Brown EG, Wood L, Wood S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 1999;20(2):109–17. Schmid CH, Lau J, McIntosh MW, Cappelleri JC. An empirical study of the effect of the control rate as a predictor of treatment efficacy in meta-analysis of clinical trials. Stat Med. 1998;17(17):1923–42. Engels EA, Schmid CH, Terrin N, et al. Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses. Stat Med. 2000;19(13):1707–28. Austin PC. Absolute risk reductions and numbers needed to treat can be obtained from adjusted survival models for time-to-event outcomes. J Clin Epidemiol. 2010;63(1):46–55. Laubender RP, Bender R. Estimating adjusted risk difference (RD) and number needed to treat (NNT) measures in the Cox regression model. Stat Med. 2010;29(7–8):851–9. Laubender RP, Bender R. A note on calculating asymptotic confidence intervals for the adjusted risk difference and number needed to treat in the Cox regression model. Stat Med. 2014;33(5):798–810. Correction: Stat Med. 2014;33(5):810–1. Heller RF, Dobson AJ, Attia J, Page J. Impact numbers: measures of risk factor impact on the whole population from case–control and cohort studies. J Epidemiol Community Health. 2002;56(8):606–10. Attia J, Page J, Heller RF, Dobson AJ. Impact numbers in health policy decisions. J Epidemiol Community Health. 2002;56(8):600–5. Heller RF, Edwards R, McElduff P. Implementing guidelines in primary care: can population impact measures help? BMC Public Health. 2003;3:7. Heller RF, Buchan I, Edwards R, et al. Communicating risks at the population level: application of population impact numbers. BMJ. 2003;327(7424):1162–5. Hutton JL. Number needed to treat: properties and problems. J R Stat Soc A Stat Soc. 2000;163(3):403–19. Altman DG, Deeks JJ. Meta-analysis, Simpson’s paradox, and the number needed to treat. BMC Med Res Methodol. 2002;2:3. Marx A, Bucher HC. Numbers needed to treat derived from meta-analysis: a word of caution. ACP J Club. 2003;138(2):A11–2. Shepherd J, Kastelein JP, Bittner VA, et al. Intensive lipid lowering with atorvastatin in patients with coronary artery disease, diabetes, and chronic kidney disease. Mayo Clin Proc. 2008;83(8):870–9. Lubsen J, Hoes A, Grobbee D. Implications of trial results: the potentially misleading notions of number needed to treat and average duration of life gained. Lancet. 2000;356(9243):1757–9. Mayne TJ, Whalen E, Vu A. Annualized was found better than absolute risk reduction in the calculation of number needed to treat in chronic conditions. J Clin Epidemiol. 2006;59(3):217–23. Girerd N, Rabilloud M, Duarte K, Roy P. Number needed to treat from absolute risk and incidence rate: how to make apples and oranges comparable? J Clin Epidemiol. 2014;67(2):236–8. Bender R, Kromp M, Kiefer C, Sturtz S. Estimation of numbers needed to treat should be based on absolute risks. J Clin Epidemiol. 2014;67(2):238–9. Suissa S. Number needed to treat in COPD: exacerbations versus pneumonias. Thorax. 2013;68(6):540–3. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, et al. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA. 2010;304(4):411–8.