Deuteron Quadrupole Coupling Constants in Deuterocarbons

Journal of Chemical Physics - Tập 51 Số 4 - Trang 1610-1614 - 1969
Pedro L. Olympia1, I. Y. Wei1, B. M. Fung1
1Department of Chemistry Tufts University Medford, Massachusetts 02155

Tóm tắt

The dependence of the deuteron quadrupole coupling constant (DQCC) on the nature of hybridization of carbon in deuterocarbons is examined in detail. A simple molecular orbital description of the C–D fragment, with various effective nuclear charges on carbon, is used. The calculated values are shown to be comparable to experimental results and other theoretical models which treat the entire molecules rather than simply the C–D fragment. It is shown that DQCC(sp) > DQCC(sp2) > DQCC(sp3) which may be attributed to the fact that the nuclear contribution to the electric field gradient decreases faster than the electronic part in the series sp, sp2, sp3. A collection of experimental data, establishing the same trend obtained theoretically, is presented including new deuterium NMR results on phenylacetylene-d and ferrocene-d10.

Từ khóa


Tài liệu tham khảo

1949, J. Chem. Phys., 17, 782, 10.1063/1.1747400

1957, Solid State Phys., 5, 322

1958, Solid State Phys., 1, 1

1969, J. Chem. Phys., 50, 439, 10.1063/1.1670818

1967, J. Chem. Phys., 46, 1824, 10.1063/1.1840941

1968, Advan. Mag. Resonance, 3, 141, 10.1016/B978-1-4832-3116-7.50011-4

1963, J. Chem. Phys., 38, 1227, 10.1063/1.1733827

1969, J. Chem. Phys., 50, 2265, 10.1063/1.1671366

1967, Phys. Rev., 153, 599, 10.1103/PhysRev.153.599

1967, J. Chem. Phys., 46, 1291, 10.1063/1.1840847

1955, Phys. Rev., 97, 1474, 10.1103/PhysRev.97.1474

1959, Phys. Rev., 115, 896

1962, J. Chem. Phys., 36, 960, 10.1063/1.1732696

1968, Trans. Faraday Soc., 64, 1, 10.1039/TF9686400001

1965, J. Chem. Phys., 43, 3442, 10.1063/1.1696498

1955, J. Chem. Phys., 23, 253, 10.1063/1.1741950

1966, J. Chem. Phys., 45, 8, 10.1063/1.1727359

1964, Chem. Ber., 97, 1829, 10.1002/cber.19640970708

1900, Bull. Soc. Chim. France, 1960, 1500

1966, J. Chem. Phys., 45, 1670, 10.1063/1.1727812

1960, J. Chem. Phys., 32, 85, 10.1063/1.1700951

1963, J. Chem. Phys., 39, 1995, 10.1063/1.1734572

1937, Trans. Faraday Soc., 33, 1479, 10.1039/tf9373301479

1933, J. Chem. Phys., 1, 593, 10.1063/1.1749333

1962, J. Chem. Phys., 37, 2755, 10.1063/1.1733101

1951, Phil. Trans. Roy. Soc. London, A243, 221

1962, J. Chem. Phys., 37, 267, 10.1063/1.1701315

1966, Progr. Theoret. Phys. (Kyoto), 35, 1154, 10.1143/PTP.35.1154

1960, Rev. Mod. Phys., 32, 245, 10.1103/RevModPhys.32.245

1968, J. Chem. Phys., 48, 2379, 10.1063/1.1669447

1963, J. Chem. Phys., 38, 1155, 10.1063/1.1733817

1969, J. Chem. Phys., 50, 52, 10.1063/1.1670830

1967, J. Chem. Phys., 47, 3621, 10.1063/1.1712431

1961, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd., 33

1959, Dokl. Akad. Nauk SSSR, 128, 1234

1969, Inorg. Chem., 8, 252, 10.1021/ic50072a014

1962, J. Chem. Phys., 36, 1122, 10.1063/1.1732703

1965, Bull. Chem. Soc. Japan, 38, 490, 10.1246/bcsj.38.490

1965, J. Phys. Soc. Japan, 20, 2290, 10.1143/JPSJ.20.2290

1967, Mol. Phys., 12, 299, 10.1080/00268976700100411

1968, Mol. Phys., 14, 281, 10.1080/00268976800100311

1966, J. Chem. Phys., 45, 4600, 10.1063/1.1727542

1967, J. Chem. Phys., 47, 1592, 10.1063/1.1712138

1962, J. Chem. Phys., 36, 1473, 10.1063/1.1732766

1966, Ann. Univ. Turku., 93, 3