Động lực học liên kết của hệ đa thân bánh răng được hỗ trợ bởi các khớp hình trụ bôi trơn ElastoHydroDynamic

Springer Science and Business Media LLC - Tập 33 - Trang 259-284 - 2014
Qiang Tian1, Qianfei Xiao1, Yanlei Sun1, Haiyan Hu1, Hui Liu2, Paulo Flores3
1Ministry of Education (MOE) Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
2School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
3Department of Mechanical Engineering, University of Minho, Guimarães, Portugal

Tóm tắt

Bài báo này đề xuất một phương pháp tính toán toàn diện để nghiên cứu động lực học liên kết của hệ đa thân có bánh răng được hỗ trợ bởi các khớp hình trụ bôi trơn bởi ElastoHydroDynamic (EHD). Hệ đa thân có bánh răng được mô tả thông qua phương pháp Dựa trên Tọa độ Tuyệt đối (ACB), kết hợp giữa Mô hình Tọa độ Tự nhiên (NCF) mô tả các thân cứng và Mô hình Tọa độ Nốt Tuyệt đối (ANCF) đặc trưng cho các thân mềm. Dựa trên phương pháp vòng bi ngắn hữu hạn, điều kiện bôi trơn EHD cho các khớp hình trụ hỗ trợ hệ bánh răng được xem xét ở đây. Các lực bôi trơn phát triển tại các khớp hình trụ được tính toán bằng cách giải phương trình Reynolds thông qua phương pháp sai phân hữu hạn. Để đánh giá các lực tiếp xúc bình thường của cặp bánh răng dọc theo Đường hành động (LOA), độ cứng lưới thay đổi theo thời gian, độ tán xạ lưới và Lỗi truyền động tĩnh (STE) được sử dụng. Độ cứng lưới thay đổi theo thời gian được tính toán bằng phương pháp của Chaari. Các lực ma sát trượt dọc theo Đường không hành động (OLOA) được tính toán bằng các mô hình ma sát Coulomb với hệ số ma sát thay đổi theo thời gian dưới điều kiện bôi trơn EHD của răng bánh. Cuối cùng, hai ví dụ số cho ứng dụng được trình bày để chứng minh và xác thực phương pháp đề xuất.

Từ khóa


Tài liệu tham khảo

Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Mech. Mach. Theory 53, 30–49 (2012) Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamic behaviour of planar rigid multibody systems including revolute joints with clearance. Proc. Inst. Mech. Eng, Part K: J. Multibody Dyn. 221(2), 161–174 (2007) Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87, 913–929 (2009) Erkaya, S., Uzmay, İ.: Experimental investigation of joint clearance effects on the dynamics of a slider–cranker mechanism. Multibody Syst. Dyn. 20, 69–83 (2010) Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009) Flores, P., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Modelling lubricated revolute joints in multibody mechanical systems. Proc. Inst. Mech. Eng, Part K: J. Multibody Dyn. 218(4), 183–190 (2004) Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–67 (2011) Flores, P., Lankarani, H.M.: Spatial rigid-multi-body systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. 60, 99–114 (2010) Stefanelli, R., Valentini, P.P., Vita, L.: Modeling of hydrodynamic journal bearing in spatial multibody systems. In: ASME International Design Engineering Technical Conference, California, USA, DETC2005-84858 (2005) Brutti, C., Coglitore, G., Valentini, P.P.: Modeling 3D revolute joint with clearance and contact stiffness. Nonlinear Dyn. 66, 531–548 (2011) Liu, C., Tian, Q., Hu, H.: Dynamics and control of a spatial rigid–flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012) Pinkus, O., Sternlicht, S.A.: Theory of Hydrodynamic Lubrication. McGraw Hill, New York (1961) Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010) Dowson, D., Ehret, P.: Past, present and future studies in elastohydrodynamics. Proc. Inst. Mech. Eng. 213(5), 317–333 (1999) Lugt, P.M., Morles-Espejel, G.E.: A review of Elasto-Hydrodynamic lubrication theory. Tribol. Trans. 54, 470–496 (2011) Liu, H.P., Xu, H., Ellision, P.J., Jin, Z.M.: Application of computational fluid dynamics and Fluid–Structure Interaction method to the lubrication study of a rotor bearing System. Tribol. Lett. 38(3), 325–336 (2010) Shenoy, B.S., Pai, R.S., Rao, D.S., Pai, R.: Elasto-hydrodynamic lubrication analysis of full 360° journal bearing using CFD and FSI techniques. World J. Model. Simul. 5(4), 315–320 (2009) Attia, H.M., Bouziz, S., Maatar, M., Fakhfakh, T., Haddar, M.: Hydrodynamic and elastohydrodynamic studies of a cylindrical journal bearing. J. Hydrodyn. 22(2), 155–163 (2010) Slim, B., Tahar, F., Mohamed, H.: Acoustic analysis of hydrodynamic and elasto-hydrodynamic oil lubricated journal bearings. J. Hydrodyn. 24(2), 250–256 (2012) Tian, Q., Sun, Y.L., Liu, C., Hu, H., Flores, P.: ElastoHydroDynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114–115, 106–120 (2013) García De Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems the Real-Time Challenge. Springer, New York (1994) Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical Report. No. MBS96-1-UIC, University of Illinois at Chicago (1996) Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007) Shabana, A.A.: Flexible multibody dynamics review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997) Özgüven, H.N., Houser, D.R.: Mathematical models used in gear dynamics a review. J. Sound Vib. 121(3), 383–411 (1988) Kahraman, A., Singh, R.: Nonlinear dynamics of a geared rotor bearing system with multiple clearances. J. Sound Vib. 144(3), 469–506 (1991) Kahraman, A., Singh, R.: Interactions between time-varying mesh stiffness and clearance nonlinearities in a geared system. J. Sound Vib. 146(1), 135–156 (1991) Theodossiades, S., Natsiavas, S.: On geared rotordynamic systems with oil journal bearings. J. Sound Vib. 243(4), 721–745 (2001) Shiau, T.N., Chou, Y.W., Chang, J.R., Nelson, H.D.: A study on the dynamic characteristics of geared rotor-bearing system with hybrid method. In: International Gas Turbine and Aeroengine Congress and Exposition, The Hague, Netherlands (1994) Fernandez del Rincon, A., Viadero, F., Iglesias, M., García, P., de-Juan, A., Sancibrian, R.: A model for the study of meshing stiffness in spur gear transmissions. Mech. Mach. Theory 61, 30–58 (2013) Rao, J.S., Shiau, T.N., Chang, J.R.: Theoretical analysis of lateral response due to torsional excitation of geared rotors. Mech. Mach. Theory 33, 761–783 (1998) Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012) Baguet, S., Jacquenot, G.: Nonlinear coupling in a gear-shaft-bearing system. Mech. Mach. Theory 45, 1777–1796 (2010) Wan, C., Jian, C.: Nonlinear analysis for gear pair system supported by long journal bearings under nonlinear suspension. Mech. Mach. Theory 45, 569–583 (2010) Vinayak, H., Singh, R.: Multibody dynamics and model analysis of compliant gear bodies. J. Sound Vib. 210, 171–214 (1998) Wang, Y., Cheung, H.M.E., Zhang, W.J.: Finite element modelling of geared multibody system. Commun. Numer. Methods Eng. 18, 765–778 (2002) Chang, J.R.: Coupling effect of flexible geared rotor on quick-return mechanism undergoing three-dimensional vibration. J. Sound Vib. 300, 139–159 (2007) Martin, K.F.: A review of friction predictions in gear teeth. Wear 49, 201–238 (1978) Vaishya, M., Singh, R.: Strategies for modeling friction in gear dynamics. J. Mech. Des. 125, 383–393 (2003) Vaishya, M., Singh, R.: Analysis of periodically varying gear mesh systems with coulomb friction using Floquet theory. J. Sound Vib. 243(3), 525–545 (2001) Vaishya, M., Singh, R.: Sliding friction-induced non-linearity and parametric effects in gear dynamics. J. Sound Vib. 248(4), 671–694 (2001) Xu, H., Kahraman, A., Anderson, N.E., Maddock, D.G.: Prediction of mechanical efficiency of parallel-axis gear pairs. ASME J. Mech. Des. 129, 58–68 (2007) Xu, H.: Development of a generalized mechanical efficiency prediction methodology for gear pairs. Ph.D. Dissertation, The Ohio State University, Columbus, Ohio (2005) He, S., Cho, S., Singh, R.: Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations. J. Sound Vib. 309, 843–851 (2008) García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20, 1–28 (2008) Liu, C., Tian, Q., Hu, H.Y., García-Vallejo, D.: Simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody systems. Nonlinear Dyn. 69, 127–147 (2012) Shabana, A.A., Yakoub, R.Y.: Three-dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001) Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2001) He, S., Gunda, R., Singh, R.: Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness. J. Sound Vib. 301, 927–949 (2007) Weber, C.: The Deformation of Loaded Gears and the Effect on Their Load-carrying Capacity. Sponsored Research. British Dept. Sci. and Ind. Res. Report No. 3, Germany (1949) Cornell, R.W.: Compliance and stress sensitivity of spur gear teeth. ASME J. Mech. Des. 103, 447–459 (1981) Attia, Y.: Deflection of spur gear teeth cut in thin rims. ASME Paper 63-WA-14 (1963) Baud, S., Velex, P.: Static and dynamic tooth loading in spur and helical geared systems-experiments and model validation. J. Mech. Des. 124, 334–346 (2002) Sainsot, P., Velex, P., Duverger, O.: Contribution of gear body to tooth deflections a new bidimensional analytical formula. J. Mech. Des. 126, 748–752 (2004) Wang, Y.: Dynamic modelling of flexible geared multibody system: A finite element approach. Ph.D. Thesis, City University of Hong Kong (1999) Yang, D.C.H., Sun, Z.S.: A rotary model for spur gear dynamics. ASME J. Mech., Trans. Aut. Des. 107, 529–535 (1985) Chaari, F., Fakhfakh, T., Haddar, M.: Analytical investigation on the effect of gear teeth faults on the dynamic response of a planetary gear set. Noise Vib. Worldw. 37, 9–15 (2006) Chaari, F., Baccar, W., Abbes, M.S., Haddar, M.: Effect of spalling or tooth breakage on gearmesh stiffness and dynamic response of a one-stage spur gear transmission. Eur. J. Mech. A, Solids 27, 691–705 (2008) Chaari, F., Fakhfakh, T., Haddar, M.: Analytical modeling of spur gear tooth crack and influence on gear mesh stiffness. Eur. J. Mech. A, Solids 28, 461–468 (2009) Wang, J., Zheng, J.H., Yang, A.: An analytical study of bifurcation and chaos in a spur gear pair with sliding friction. Proc. Eng. 31, 563–570 (2012) He, S., Singh, R.: Dynamic transmission error prediction of helical gear pair under sliding friction using Floquet theory. J. Mech. Des. 130, 052603 (2008) Xu, H., Kahraman, A.: Prediction of friction-related power losses of hypoid gear pairs. Proc. Inst. Mech. Eng. Part K: J. Multibody Dyn. 221, 387–400 (2007) Bathe, K.J.: Finite Element Procedures. Prentice Hall, New Jersey (1996) Shabana, A.A.: Computational Dynamics, 3rd edn. Wiley, New York (2010) Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, Cambridge (2008) Liu, C., Tian, Q., Hu, H.Y.: Dynamics of a large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26, 283–305 (2011) Arnold, M., Brüls, O.: Convergence of the generalized-a scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007) Liu, C., Tian, Q., Hu, H.Y.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013) Seo, J.H., Jung, I.H., Park, T.W., Chai, J.B.: Dynamic analysis of a multibody system including a very flexible beam element. JSME Int. J. Ser. C 48(2), 224–233 (2005)