On the Emergence and Orbital Stability of Phase-Locked States for the Lohe Model

Journal of Statistical Physics - Tập 163 - Trang 411-439 - 2016
Seung-Yeal Ha1,2, Seung-Yeon Ryoo3
1Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul, Korea
2Korea Institute for Advanced Study, Seoul, Korea
3Department of Mathematical Sciences, Seoul National University, Seoul, Korea

Tóm tắt

We study the emergence and orbital stability of phase-locked states of the Lohe model, which was proposed as a non-abelian generalization of the Kuramoto phase model for synchronization. Lohe introduced a first-order system of matrix-valued ordinary differential equations for quantum synchronization and numerically observed the asymptotic formation and orbital stability of phase-locked states of the Lohe model. In this paper, we provide an analytical framework to confirm Lohe’s observations of emergent phase-locked states. This extends earlier special results on lower dimensions to any finite dimension. For the construction and orbital stability of phase-locked states, we introduce Lyapunov functions to measure the ensemble diameter and dissimilarity between two Lohe flows, and using the time-evolution estimates of these Lyapunov functions, we present an admissible set of initial states, and show that an admissible initial state leads to a unique phase-locked asymptotic state.

Tài liệu tham khảo

Acebron, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005) Aeyels, D., Rogge, J.: Stability of phase locking and existence of frequency in networks of globally coupled oscillators. Prog. Theor. Phys. 112, 921–941 (2004) Benedetto, D., Caglioti, E. and Montemagno, U.: On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. (to appear) Buck, J., Buck, E.: Biology of synchronous flashing of fireflies. Nature 211, 562 (1966) Chi, D., Choi, S.-H., Ha, S.-Y.: Emergent behaviors of a holonomic particle system on a sphere. J. Math. Phys. 55, 052703 (2014) Choi, S.-H., Ha, S.-Y.: Emergent behaviors of quantum Lohe oscillators with all-to-all couplings. J. Nonlinear Sci. 25, 1257–1283 (2015) Choi, S.-H. and Ha, S.-Y.: Time-delayed interactions and synchronization of identical Lohe oscillators. Q. Appl. Math. (to appear) Choi, S.-H., Ha, S.-Y.: Large-time dynamics of the asymptotic Lohe model with a small-time delay. J. Phys. A 48, 425101 (2015) Choi, S.-H., Ha, S.-Y.: Quantum synchronization of the Schödinger-Lohe model. J. Phys. A 47, 355104 (2014) Choi, S.-H., Ha, S.-Y.: Complete entrainment of Lohe oscillators under attractive and repulsive couplings. SIAM. J. App. Dyn. 13, 1417–1441 (2013) Choi, Y., Ha, S.-Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D 241, 735–754 (2012) Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Automatic Control 54, 353–357 (2009) Dong, J.-G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11, 465–480 (2013) Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014) Dörfler, F. and Bullo, F.: Exploring synchronization in complex oscillator networks. In: IEEE 51st Annual Conference on Decision and Control (CDC), pp. 7157–7170 (2012) Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM. J. Appl. Dyn. Syst. 10, 1070–1099 (2011) Ha, S.-Y., Kim, H. W. and Ryoo, S.-Y.: Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci. (to appear) Ha, S.-Y., Li, Z., Xue, X.: Formation of phase-locked states in a population of locally interacting Kuramoto oscillators. J. Differ. Equ. 255, 3053–3070 (2013) Jadbabaie, A., Motee, N. and Barahona M.: On the stability of the Kuramoto model of coupled nonlinear oscillators. In: Proceedings of the American Control Conference, pp. 4296–4301 (2004) Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008) Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984) Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lecture Notes Theor. Phys. 30, 420 (1975) Lohe, M.A.: Quantum synchronization over quantum networks. J. Phys. A 43, 465301 (2010) Lohe, M.A.: Non-abelian Kuramoto model and synchronization. J. Phys. A 42, 395101–395126 (2009) Olfati-Saber, R.: Swarms on Sphere: A Programmable Swarm with Synchronous Behaviors like Oscillator Networks. In: IEEE 45th Conference on Decision and Control (CDC), pp. 5060–5066 (2006) Mirollo, R., Strogatz, S.H.: The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Sci. 17, 309–347 (2007) Mirollo, R., Strogatz, S.H.: The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D 205, 249–266 (2005) Mirollo, R., Strogatz, S.H.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991) Peskin, C.S.: Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New York (1975) Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001) Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000) Verwoerd, M., Mason, O.: On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph. SIAM J. Appl. Dyn. Syst. 8, 417–453 (2009) Verwoerd, M., Mason, O.: Global phase-locking in finite populations of phase-coupled oscillators. SIAM J. Appl. Dyn. Syst. 7, 134–160 (2008) Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967) Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980) Xu, M., Tieri, D.A., Fine, E.C., Thompson, J.K., Holland, M.J.: Quantum synchronization of two ensembles of atoms. Phys. Rev. Lett. 113, 154101 (2014) Zhu, B., Schachenmayer, J., Xu, M., Herrera, F., Restrepo, J.G., Holland, M.J., Rey, A.M.: Synchronization of interacting dipoles. New J. Phys. 17, 083063 (2015)