On the Emergence and Orbital Stability of Phase-Locked States for the Lohe Model
Tóm tắt
We study the emergence and orbital stability of phase-locked states of the Lohe model, which was proposed as a non-abelian generalization of the Kuramoto phase model for synchronization. Lohe introduced a first-order system of matrix-valued ordinary differential equations for quantum synchronization and numerically observed the asymptotic formation and orbital stability of phase-locked states of the Lohe model. In this paper, we provide an analytical framework to confirm Lohe’s observations of emergent phase-locked states. This extends earlier special results on lower dimensions to any finite dimension. For the construction and orbital stability of phase-locked states, we introduce Lyapunov functions to measure the ensemble diameter and dissimilarity between two Lohe flows, and using the time-evolution estimates of these Lyapunov functions, we present an admissible set of initial states, and show that an admissible initial state leads to a unique phase-locked asymptotic state.
Tài liệu tham khảo
Acebron, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)
Aeyels, D., Rogge, J.: Stability of phase locking and existence of frequency in networks of globally coupled oscillators. Prog. Theor. Phys. 112, 921–941 (2004)
Benedetto, D., Caglioti, E. and Montemagno, U.: On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. (to appear)
Buck, J., Buck, E.: Biology of synchronous flashing of fireflies. Nature 211, 562 (1966)
Chi, D., Choi, S.-H., Ha, S.-Y.: Emergent behaviors of a holonomic particle system on a sphere. J. Math. Phys. 55, 052703 (2014)
Choi, S.-H., Ha, S.-Y.: Emergent behaviors of quantum Lohe oscillators with all-to-all couplings. J. Nonlinear Sci. 25, 1257–1283 (2015)
Choi, S.-H. and Ha, S.-Y.: Time-delayed interactions and synchronization of identical Lohe oscillators. Q. Appl. Math. (to appear)
Choi, S.-H., Ha, S.-Y.: Large-time dynamics of the asymptotic Lohe model with a small-time delay. J. Phys. A 48, 425101 (2015)
Choi, S.-H., Ha, S.-Y.: Quantum synchronization of the Schödinger-Lohe model. J. Phys. A 47, 355104 (2014)
Choi, S.-H., Ha, S.-Y.: Complete entrainment of Lohe oscillators under attractive and repulsive couplings. SIAM. J. App. Dyn. 13, 1417–1441 (2013)
Choi, Y., Ha, S.-Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D 241, 735–754 (2012)
Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Automatic Control 54, 353–357 (2009)
Dong, J.-G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11, 465–480 (2013)
Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014)
Dörfler, F. and Bullo, F.: Exploring synchronization in complex oscillator networks. In: IEEE 51st Annual Conference on Decision and Control (CDC), pp. 7157–7170 (2012)
Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM. J. Appl. Dyn. Syst. 10, 1070–1099 (2011)
Ha, S.-Y., Kim, H. W. and Ryoo, S.-Y.: Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci. (to appear)
Ha, S.-Y., Li, Z., Xue, X.: Formation of phase-locked states in a population of locally interacting Kuramoto oscillators. J. Differ. Equ. 255, 3053–3070 (2013)
Jadbabaie, A., Motee, N. and Barahona M.: On the stability of the Kuramoto model of coupled nonlinear oscillators. In: Proceedings of the American Control Conference, pp. 4296–4301 (2004)
Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)
Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984)
Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lecture Notes Theor. Phys. 30, 420 (1975)
Lohe, M.A.: Quantum synchronization over quantum networks. J. Phys. A 43, 465301 (2010)
Lohe, M.A.: Non-abelian Kuramoto model and synchronization. J. Phys. A 42, 395101–395126 (2009)
Olfati-Saber, R.: Swarms on Sphere: A Programmable Swarm with Synchronous Behaviors like Oscillator Networks. In: IEEE 45th Conference on Decision and Control (CDC), pp. 5060–5066 (2006)
Mirollo, R., Strogatz, S.H.: The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Sci. 17, 309–347 (2007)
Mirollo, R., Strogatz, S.H.: The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D 205, 249–266 (2005)
Mirollo, R., Strogatz, S.H.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991)
Peskin, C.S.: Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New York (1975)
Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)
Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)
Verwoerd, M., Mason, O.: On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph. SIAM J. Appl. Dyn. Syst. 8, 417–453 (2009)
Verwoerd, M., Mason, O.: Global phase-locking in finite populations of phase-coupled oscillators. SIAM J. Appl. Dyn. Syst. 7, 134–160 (2008)
Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)
Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)
Xu, M., Tieri, D.A., Fine, E.C., Thompson, J.K., Holland, M.J.: Quantum synchronization of two ensembles of atoms. Phys. Rev. Lett. 113, 154101 (2014)
Zhu, B., Schachenmayer, J., Xu, M., Herrera, F., Restrepo, J.G., Holland, M.J., Rey, A.M.: Synchronization of interacting dipoles. New J. Phys. 17, 083063 (2015)