The impact of molded pulp product process on the mechanical properties of molded Bleached Chemi-Thermo-Mechanical Pulp

Functional Composite Materials - Tập 2 - Trang 1-10 - 2021
Claire Dislaire1,2, Yves Grohens1, Bastien Seantier1, Marion Muzy2
1Université de Bretagne Sud - IRDL (UMR CNRS 6027), Lorient, France
2Ecofeutre, Rue des Sports, ZA de Kerivan, Evellys, France

Tóm tắt

This study was carried out using bleached softwood Chemi-Thermo-Mechanical Pulp to evaluate the influence of Molded Pulp Products’ manufacturing process parameters on the finished products’ mechanical and hygroscopic properties. A Taguchi table was done to make 8 tests with specific process parameters such as moulds temperature, pulping time, drying time, and pressing time. The results of these tests were used to obtain an optimized manufacturing process with improved mechanical properties and a lower water uptake after sorption analysis and water immersion. The optimized process parameters allowed us to improve the Young’ Modulus after 30h immersion of 58% and a water uptake reduction of 78% with the first 8 tests done.

Tài liệu tham khảo

M. Ragnar, M.E. Lindström, M. Wimby, J. Blechschmidt, S. Heinemann, in Ullmann’s Encyclopedia of Industrial Chemistry. Pulp (2014), pp. 1–92 P. Bajpai, Biermann’s Handbook of Pulp and Paper: Volume 1: Raw Material and Pulp Making (Elsevier Science, San Diego, 2018) K.F. Rullifank, M.E. Roefinal, M. Kostanti, L. Sartika, Evelyn, Pulp and paper industry: an overview on pulping technologies, factors, and challenges. IOP Conf. Ser. Mater. Sci. Eng. 845, 012005 (2020) N. Sharma, R.D. Godiyal, B.P. Thapliyal, A review on pulping, bleaching and papermaking processes. Journal of Graphic Era University. 8, 18 (2020) P. Engstrand, C. Sundberg, C. Wancke-Stahl, J. Jonsson, G. Starck, and M. Wahlgren, Method of Producing Bleached Thermomechanical Pulp (Tmp) or Bleached Chemithermomechanical Pulp (Ctmp), US 2004/0231811 A1 (2004) F. E. Keyes, Method of Molding Pulp Articles, US 424,003 (1890) M. L. Keyes, Apparatus for Making Pulp Articles, US740023A (1903) M. Didone, P. Saxena, E. Brilhuis-Meijer, G. Tosello, G. Bissacco, T.C. Mcaloone, D.C.A. Pigosso, T.J. Howard, Moulded pulp manufacturing overview and prospects. Packag. Technol. Sci. 30, 6 (2017) M. Didone, G. Tosello, Moulded pulp products manufacturing with thermoforming. Packag. Technol. Sci. 32, 1 (2019) P. Saxena, G. Bissacco, K.Æ. Meinert, F.J. Bedka, Mold design and fabrication for production of thermoformed paper-based packaging products. J. Manuf. Process. 58, 311 (2020) X. Yang, F. Berthold, L.A. Berglund, High-density molded cellulose fibers and transparent biocomposites based on oriented Holocellulose. ACS Appl. Mater. Interfaces 11, 10 (2019) IMFA. Molded fiber. https://www.imfa.org/molded-fiber/. Accessed May 2018 F. A. Paine (ed.), The Packaging User’s Handbook (Blackie Academic & Professional, London, 1996) A. Markopoulos, W. Habrat, N. Galanis, N. Karkalos, Modelling and Optimization of Machining with the Use of Statistical Methods and Soft Computing (2016), pp. 39–88 AFNOR. NF EN ISO 527-2 - Plastics - Determination of tensile properties - Part 2: Test Conditions for Moulding and Extrusion Plastics. Publication Feb 2012 E.O. Timmermann, J. Chirife, H.A. Iglesias, Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? J. Food Eng. 13 (2001), pp. 19–31 J. Blahovec, S. Yanniotis, GAB generalized equation for sorption phenomena. Food Bioprocess Technol. 1, 82 (2008) Y. Chen, J. Wan, X. Zhang, Y. Ma, Y. Wang, Effect of beating on recycled properties of unbleached eucalyptus cellulose fiber. Carbohydr. Polym. 87, 730 (2012) S. Park, R. Venditti, H. Jameel, J. Pawlak, Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning Calorimetry. Carbohydr. Polym. 66, 97 (2006) M.D.H. Beg, K.L. Pickering, Mechanical performance of Kraft fibre reinforced polypropylene composites: influence of fibre length, fibre beating and hygrothermal ageing. Compos. A Appl. Sci. Manuf. 39, 1748 (2008) Y. Chen, J. Wan, M. Huang, Y. Ma, Y. Wang, H. Lv, J. Yang, Influence of drying temperature and duration on fiber properties of unbleached wheat straw pulp. Carbohydr. Polym. 85, 759 (2011) D. Bezanovic, E.F. Kaasschieter, M. Riepen, Modelling of Hot Pressing of Paper (Technische Universiteit Eindhoven, The Netherlands, 2005), p. 0526 S. Norgren, G. Pettersson, H. Höglund, Strong paper from spruce CTMP – Part II: effect of pressing at nip press temperatures above the lignin softening temperature. Nord. Pulp Pap. Res. J. 33, 142 (2018) K. Marta, P. Piotr, D. Marcin, B. Kamila, Influence of drying temperature on cellulose fibers Hornification process. Forestry Wood Technol. 86 (2014), pp. 19–31 A. Figueiredo, D. Evtuguin, J. Saraiva, Effect of high-pressure treatment on structure and properties of cellulose in eucalypt pulps. Cellulose 17, 1193 (2010) J. Hunt, Know Your Fibers: Process and Properties, or, a Material Science Approach to Designing Pulp Molded Products, IMPEPA - New Developments in Molded Pulp Processes & Packaging II: Seminar Proceedings (1998) T. Joelsson, G. Pettersson, S. Norgren, A. Svedberg, H. Höglund, P. Engstrand, High strength paper from high yield pulps by means of hot-pressing. Nord. Pulp Pap. Res. J. 35, 195 (2020) R.B. Anderson, W.K. Hall, Modifications of the Brunauer, Emmett and Teller equation II 1. J. Am. Chem. Soc. 70, 1727 (1948) J.H. Deboer, The dynamical character of adsorption. Soil Sci. 76, 166 (1953) E.A. Guggenheim, Applications of Statistical Mechanics (Clarendon Press, The Netherlands, 1966). C.M. Samaniego-Esguerra, I.F. Boag, G.L. Robertson, Comparison of regression methods for fitting the GAB model to the moisture isotherms of some dried fruit and vegetables. J. Food Eng. 13, 115 (1991) P.B. Staudt, I.C. Tessaro, L.D.F. Marczak, R.D.P. Soares, N.S.M. Cardozo, A new method for predicting sorption isotherms at different temperatures: extension to the GAB model. J. Food Eng. 118, 247 (2013) M.E. Parker, J.E. Bronlund, A.J. Mawson, Moisture sorption isotherms for paper and paperboard in food chain conditions. Packag. Technol. Sci. 19, 193 (2006) A.H. Bedane, H. Xiao, M. Eić, Water vapor adsorption Equilibria and mass transport in unmodified and modified cellulose fiber-based materials. Adsorption 20, 863 (2014) J. Leitner, G. Seyfriedsberger, A. Kandelbauer, Modifications in the bulk and the surface of unbleached Lignocellulosic fibers induced by a heat treatment without water removal: Effects on fibre relaxation of PFI-Beaten Kraft fibers. Eur. J. Wood Prod. 71, 725 (2013) A. Koubaa, Effect of Press-Drying Parameters on Paper Properties (2018), pp. 87–106 T.C. Maloney, H. Paulapuro, in Appita Conference. The effect of drying conditions on the swelling and bonding properties of bleached Kraft hardwood pulp (2000) J. E. Stone and S. Scallan, Influence of Drying on the Pore Structures of the Cell Wall, Consolidation of the Paper Web 30 (1965) G. Pettersson, S. Norgren, H. Höglund, Strong paper from spruce CTMP - part I. Nord. Pulp Pap. R. J. 32, 54 (2017)