Reply to the EFSA (2016) on the relevance of recent publications (Hofmann et al. 2014, 2016) on environmental risk assessment and management of Bt-maize events (MON810, Bt11 and 1507)

Springer Science and Business Media LLC - Tập 29 - Trang 1-12 - 2017
Maren Kruse-Plass1,2, Frieder Hofmann1,3, Ulrike Kuhn1,4, Mathias Otto5, Ulrich Schlechtriemen1,6, Boris Schröder7,8, Rudolf Vögel9, Werner Wosniok10
1TIEM Integrated Environmental Monitoring, Dortmund/Bremen, Germany
2Marktredwitz, Germany
3Ökologiebüro, Bremen, Germany
4Büro Kuhn, Bremen, Germany
5Federal Agency for Nature Conservation (BfN), Bonn, Germany
6Sachverständigenbüro, Dortmund, Germany
7Landscape Ecology and Environmental Systems Analysis, Institute of Geoecology, Technische Universität, Brunswick, Germany
8Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
9Agency for Environment, Health and Consumer Protection, Eberswalde, Germany
10Institute of Statistics, University of Bremen, Bremen, Germany

Tóm tắt

In this commentary, we respond to a report of the EFSA GMO Panel (EFSA EFSA Supp Publ, 1) that criticises the outcomes of two studies published in this journal (Hofmann et al. Environ Sci Eur 26: 24, 2; Environ Sci Eur 28: 14, 3). Both publications relate to the environmental risk assessment and management of Bt-maize, including maize events MON810, Bt11 and maize 1507. The results of Hofmann et al. (Environ Sci Eur 26: 24, 2), using standardised pollen mass filter deposition measurements, indicated that the EFSA Panel model had underestimated pollen deposition and, hence, exposure of non-target organisms to Bt-maize pollen. The results implied a need for safety buffer distances in the kilometre range for protected nature reserve areas instead of the 20–30 m range recommended by the EFSA Panel. As a result, the EFSA Panel revised their model (EFSA EFSA J 13: 4127, 4), adopting the slope of the empirical data from Hofmann et al. The intercept, however, was substantially reduced to less than 1% at one point by introducing further assumptions based on the estimates of mainly panel members, citing possible ‘uncertainty’. Hofmann et al. (Environ Sci Eur 28: 14, 3) published extensive empirical data regarding pollen deposition on leaves. These results were part of a larger 3-year study involving detailed measurements of pollen release, dispersal and deposition over the maize flowering period. The data collected in situ confirmed the previous predictions of Hofmann et al. (Environ Sci Eur 26: 24, 2). Mean levels and observed variability of pollen deposition on maize and four lepidopteran host plants exceeded the assumptions and disagreed with the conclusions of the EFSA Panel. The EFSA Panel reacted in a report (EFSA EFSA Supp Publ, 1) criticising the methods and outcomes of the two published studies of Hofmann et al. while reaffirming their original recommendations. We respond here point-by-point, showing that the critique is not justified. Based on our results on Urtica leaf pollen density, we confirm the need for specific environmental impact assessments for Bt-maize cultivation with respect to protected habitats within isolation buffer distances in the kilometre range.

Tài liệu tham khảo

European Food Safety Authority (2016) Relevance of a new scientific publication (Hofmann et al. 2016) for previous environmental risk assessment conclusions and risk management recommendations on the cultivation of Bt-maize events MON810, Bt11 and 1507. EFSA Supp Publ; EN-1070 Hofmann F, Otto M, Wosniok W (2014) Maize pollen deposition in relation to the distance from the nearest pollen source under common cultivation—results of 10 years of monitoring (2001–2010). Environ Sci Eur 26:24 Hofmann F, Kruse-Plass M, Kuhn U, Otto M, Schlechtriemen U, Schröder B, Vögel R, Wosniok W (2016) Accumulation and variability of maize pollen deposition on leaves of European Lepidoptera host plants and relation to release rates and deposition determined by standardised technical sampling. Environ Sci Eur 28:14 European Food Safety Authority (2015) Scientific opinion updating risk management recommendations to limit exposure of non-target Lepidoptera of conservation concern in protected habitats to Bt-maize pollen. EFSA J 2015(13):4127 Directive 2001/18/EC of the European Parliament and of the Council on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC (2001) Off J Eur Commun 106/1 Höfte H, Whitely H (1989) Insecticide crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255 Glare TR, O’Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, Chichester Lang A, Otto M (2010) A synthesis of laboratory and field studies on the effects of transgenic Bacillus thuringiensis (Bt) maize on non-target Lepidoptera. Entomol Exp Appl 135:121–134 European Food Safety Authority (2009) Scientific opinion of the panel on genetically modified organisms on applications (EFSA-GMO-RX-MON810) for the renewal of authorisation for the continued marketing of (1) existing food and food ingredients produced from genetically modified insect resistant maize MON810; (2) feed consisting of and/or containing maize MON810, and maize MON810 for feed use (including cultivation); and of (3) food additives and feed materials produced from maize MON810, all under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 7:1149. doi: 10.2903/j.efsa.2009.1149 European Food Safety Authority (2011) Scientific opinion updating the evaluation of the environmental risk assessment and risk management recommendations on insect resistant genetically modified maize 1507 for cultivation. EFSA J 9:2429. doi:10.2903/j.efsa.2429 European Food Safety Authority (2011) Statement supplementing the evaluation of the environmental risk assessment and risk management recommendations on insect resistant genetically modified maize Bt11 for cultivation. EFSA J 9:2478. doi:10.2903/j.efsa.2478 European Food Safety Authority (2012) Scientific opinion supplementing the conclusions of the environmental risk assessment and risk management recommendations on the genetically modified insect resistant maize 1507 for cultivation. EFSA J 2012(10):2934. doi:10.2903/j.efsa.2934 European Food Safety Authority (2012) Scientific opinion supplementing the conclusions of the environmental risk assessment and risk management recommendations for the cultivation of the genetically modified insect resistant maize Bt11 and MON810. EFSA J 10:3016. doi:10.2903/j.efsa.3016 Perry JN, Devos Y, Arpaia S, Bartsch D, Gathmann A, Hails RS, Kiss J, Lheureux K, Manachini B, Mestdagh S, Neemann G, Ortego F, Schiemann J, Sweet JB (2010) A mathematical model of exposure of non-target Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe. Proc Biol Sci B. 277:1417–1425 Perry JN, Devos Y, Arpaia S, Bartsch D, Gathmann A, Hails RS, Kiss J, Lheureux K, Manachini B, Mestdagh S, Neemann G, Ortego F, Schiemann J, Sweet JB (2011) The usefulness of a mathematical model of exposure for environmental risk assessment. Proc Biol Sci 278:982–984 Perry JN, Devos Y, Arpaia S, Bartsch D, Ehlert C, Gathmann A, Hails RS, Hendriksen NB, Kiss J, Messean A, Mestdagh S, Neemanbe CC (2012) No evidence requiring change in the risk assessment of Inachisn G, Nuti M, Sweet JB, Tebbe CC. Estimating the effects of Cry1F Bt-maize pollen on non-target Lepidoptera using a mathematical model of exposure. J Appl Ecol 49:29–37 Perry JN, Arpaia S, Bartsch D, Birch N, Devos Y, Gathmann A, Gennaro A, Kiss J, Messean A, Mestdagh S, Nuti M, Sweet JB (2013) Teb io larvae. Ecol Modell 268:103–122 Holst N, Lang A, Lövei G, Otto M (2013) Increased mortality is predicted of Inachis io larvae caused by Bt-maize pollen in European farmland. Ecol Modell 250:126–133 Wraight CL, Zangerl AR, Carroll MJ, Berenbaum MR (2000) Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc Natl Acad Sci USA 97:7700–7703 Hofmann F (2007) Kurzgutachten zur Abschätzung der Maispollendeposition in Relation zur Entfernung von Maispollenquellen mittels technischem Pollensammler PMF. BfN, Bonn. http://www.bfn.de/fileadmin/MDB/documents/themen/agrogentechnik/07-05-31_Gutachten_Pollendeposition_end.pdf. Accessed 24 Oct 2016 Ober S, Hofmann F, Schlechtriemen U, Kuhn U, Wedl N, von der Ohe W, von der Ohe K, Radtke J, Müller A, Kalchschmid A, Kruse L, Epp R (2007) Durchführung eines Pollenmonitorings von Mais im Naturschutzgebiet Ruhlsdorfer Bruch. Potsdam: Fachbeiträge des Landesumweltamtes Brandenburg. http://www.mugv.brandenburg.de/cms/media.php/2320/fb_109.pdf. Accessed 29 Oct 2012 Hofmann F, Janicke L, Janicke U, Wachter R, Kuhn U (2009a) Modellrechnungen zur Ausbreitung von Maispollen unter Worst-Case-Annahmen mit Vergleich von Freilandmessdaten. Bonn: Bundesamt für Naturschutz 47. http://www.bfn.de/fileadmin/MDB/documents/service/Hofmann_et_al_2009_Maispollen_WorstCase_Modell.pdf. Accessed 28 Aug 2015 Hofmann F, Schlechtriemen U, Kuhn U, von der Ohe W, von der Ohe K, Kruse L, Epp R, Müller E, Kalchschmid A, Wachter R, Vögel R (2009b) Durchführung eines Pollenmonitorings an Kulturmais in FFH-Lebensräume Projektbericht 2008. Heft 110, Potsdam: Fachbeiträge des Landesumweltamtes Brandenburg. http://www.mugv.brandenburg.de/cms/media.php/2320/fb_110.pdf. Accessed 29 Oct 10 2012 Hofmann F, Epp R, Kruse L, Kalchschmid A, Maisch B, Müller E, Kuhn U, Kratz W, Ober S, Radtke J, Schlechtriemen U, Schmidt G, Schröder W, von der Ohe W, Vögel R, Wedl N, Wosniok W (2010) Monitoring of Bt-Maize pollen exposure in the vicinity of the nature reserve Ruhlsdorfer Bruch in northeast Germany 2007 to 2008. Umweltwiss Schadst Forsch 229:251 German Advisory Council on the Environment (SRU) (2008) Sustainable development, innovation and climate protection: a German perspective. SRU, Berlin Hofmann F, Ober S, Janicke L, Janicke U, Kuhn U, Schlechtriemen U, Unselt C, Wittich KP (2013) Eintrag von Maispflanzenteilen in die Umwelt: Abschätzung der Umweltexposition für die Risikobewertung transgener Pflanzen. Bundesamt für Naturschutz, Bonn Vögel R, Ober S, Hofmann F, Unseld C (2013) Agrogentechnik und Naturschutz-Wie können Schutzgebiete und aquatische Systeme wirksam vor dem Eintrag von Bt-Toxin geschützt werden? Potsdam: Fachbeiträge des Landesamtes für Gesundheit, Umwelt und Verbraucherschutz, Brandenburg. http://www.lugv.brandenburg.de/cms/detail.php/bb1.c.310761.de. Accessed July 20 2015 Association of German Engineers (2007) VDI-Standard: 4330 Blatt 3-monitoring the effects of genetically modified organisms (GMO)-pollen monitoring-technical pollen sampling using pollen mass filter (PMF) and sigma-2 sampler. Beuth, Berlin European Committee for Standardization (2015) CEN TS 16817-1 (DIN SPEC 33971) Technical specification-ambient air-monitoring the effects of genetically modified organisms (GMO)-pollen monitoring. Part 1: technical pollen sampling using pollen mass filter (PMF) and Sigma-2-sampler. Brussels Bøhn T, Aheto DW, Mwangala FS, Fischer K, Bones IL, Simoloka C, Fischer K, Mbeule I, Schmidt G, Breckling B (2016) Pollen-mediated gene flow and seed exchange in smallscale Zambian maize farming, implications for biosafety assessment. Sci Rep. 6:34483. doi:10.1038/srep34483 Reuter H, Breckling B, Wurbs A, Höltl K (2008) Modelling maize cross-pollination probabilities on the regional level—exemplary simulations for the county Elbe Elster in Brandenburg, Germany. In: Breckling B, Reuter H, Verhoeven R (eds) Implications of GM-crop cultivation at large spatial scales. Theorie in der Ökologie 14. Peter Lang, Frankfurt, pp 54–58 Reuter H, Böckmann S, Breckling B (2008) Analysing cross pollination studies in maize. In: Breckling B, Reuter H, Verhoeven R (eds) Implications of GM-crop cultivation at large spatial scales. Theorie in der Ökologie 14. Peter Lang, Frankfurt Van Frankenhuyzen K (2013) Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 114:79–85 Hilbeck A, Otto M (2015) Specificity and combinatorial effects of Bacillus thuringiensis cry toxins in the context of GMO environmental risk assessment. Front Environ Sci 3:71 Lang A, Oehen B, Ross J-H, Bieri K, Steinbrich A (2015) Potential exposure of butterflies in protected habitats by Bt-maize cultivation: a case study in Switzerland. Biol Cons 192:369–377 Pleasants JM, Hellmich RL, Dively GP, Sears MK, Stanley-Horn DE, Mattila HR, Foster JE, Clark TL, Jones GD (2001) Corn pollen deposition on milkweeds in and near cornfields. Proc Natl Acad Sci USA 98:11919–11924 Lang A, Ludy CV (2004) Dispersion and deposition of Bt-maize pollen in field margins. J Plant Dis Prot 111:417–428 Darvas B, Cso´ti A, Adel G, Peregovits L, Ronkay L, Lauber E, Polgar L (2004) Some data to the risk analysis of Bt-corn pollen and protected lepidopteran species in Hungary. No¨ve´nyve´delem 40:441–449 Janicke U, Janicke L (2013) Validierung der Ausbreitungsrechnung für Maispollen. In: Vögel R, Ober S, Hofmann F, Unseld C (eds) Agrogentechnik und Naturschutz-Wie können Schutzgebiete und aquatische Systeme wirksam vor dem Eintrag von Bt-Toxin? Geschützt werden Fachbeiträge des Landesamtes für Gesundheit, Umwelt und Verbraucherschutz pp 19–34 Jarosz N, Loubet B, Durand B, Foueillassar X, Huber L (2005) Variations in maize pollen emission and deposition in relation to microclimate. Environ Sci Technol 39:4377–4384 Thompson SK (2002) Sampling, 2nd edn. Wiley, New York Hofmann F, Otto M, Kuhn U, Ober S, Schlechtriemen U, Vögel R (2011) A new method for in situ measurement of Bt-maize pollen deposition on host-plant leaves. Insect 2:12–21 Hofmann F, Schlechtriemen U, Kuhn U, Wittich K-P, Koch W, Ober S, Vögel R, Otto M (2013) Variation of maize pollen shedding in North Germany and its relevance for GMO-monitoring. Theorie in der Ökologie 17:19–25 Hofmann F, Epp R, Kalchschmid A, Kratz W, Kruse L, Kuhn U, Maisch B, Müller E, Ober S, Radtke J, Schlechtriemen U, Schmidt G, Schröder W, von der Ohe W, Vögel R, Wedl N, Wosniok W (2008) GVO-Pollenmonitoring zum Bt-Maisanbau im Bereich des NSG/FFH-Schutzgebietes Ruhlsdorfer Bruch. Umweltwiss Schadst Forsch 20:275–289 Aylor DE, Boehm MT (2006) Quantifying aerial concentrations of maize pollen in the atmospheric surface layer using remote-piloted airplanes and lagrangian stochastic modeling. J Appl Meteor Climatol 45:1003–1015 Boehm MT, Aylor DE, Shields EJ (2008) Maize pollen dispersal under convective conditions. J Appl Meteorol Climatol. 47:291–307 Brunet Y, Foueillassar X, Audran A, Garrigou D, Dayau S, Tardieu L (2003) Evidence for long-range transport of viable maize pollen. In: Slagelse BB (ed) 1st European Conference on the coexistence of genetically modified crops with conventional and organic crops. Danish Institute of Agricultural Sciences, Helsingor pp 74–76 Arritt RW, Clark CA, Goggi AS, Lopez-Sanchez H, Westgate ME, Riese JM (2006) Lagrangian numerical simulations of canopy air flow effects on maize pollen dispersal. Field Crop Res 102:151–162