Bioprocessing of Stichococcus bacillaris strain siva2011

Biotechnology for Biofuels - Tập 7 - Trang 1-9 - 2014
Ganapathy Sivakumar1, Kwangkook Jeong2, Jackson O Lay3
1Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, Jonesboro, USA
2College of Engineering, Arkansas State University, Jonesboro, USA
3Arkansas Statewide Mass Spectrometry Facility, University of Arkansas, Fayetteville, USA

Tóm tắt

Globally, the development of a cost-effective long-term renewable energy infrastructure is one of the most challenging problems faced by society today. Microalgae are rich in potential biofuel substrates such as lipids, including triacylglycerols (TAGs). Some of these algae also biosynthesize small molecule hydrocarbons. These hydrocarbons can often be used as liquid fuels, often with more versatility and by a more direct approach than some TAGs. However, the appropriate TAGs, accumulated from microalgae biomass, can be used as substrates for different kinds of renewable liquid fuels such as biodiesel and jet fuel. This article describes the isolation and identification of a lipid-rich, hydrocarbon-producing alga, Stichococcus bacillaris strain siva2011, together with its bioprocessing, hydrocarbon and fatty acid methyl ester (FAME) profiles. The S. bacillaris strain siva2011 was scaled-up in an 8 L bioreactor with 0.2% CO2. The C16:0, C16:3, C18:1, C18:2 and C18:3 were 112.2, 9.4, 51.3, 74.1 and 69.2 mg/g dry weight (DW), respectively. This new strain produced a significant amount of biomass of 3.79 g/L DW on day 6 in the 8 L bioreactor and also produced three hydrocarbons. A new oil-rich microalga S. bacillaris strain siva2011 was discovered and its biomass has been scaled-up in a newly designed balloon-type bioreactor. The TAGs and hydrocarbons produced by this organism could be used as substrates for jet fuel or biodiesel.

Tài liệu tham khảo

Sivakumar G, Vail DR, Xu J, Burner DM, Lay JO, Ge X, Weathers PJ: Bioethanol and biodiesel: alternative liquid fuels for future generations. Eng Life Sci. 2010, 10: 8-18. 10.1002/elsc.200900061. Ge X, Burner DM, Xu J, Phillips GC, Sivakumar G: Bioethanol production from dedicated energy crops in Arkansas, USA. Biotechnol J. 2011, 6: 66-73. 10.1002/biot.201000240. Ge X, Green S, Zhang N, Sivakumar G, Xu J: Eastern gamagrass as an alternative cellulosic feedstock for bioethanol production. Process Biochem. 2012, 47: 335-339. 10.1016/j.procbio.2011.11.008. Sivakumar G, Xu J, Thompson RW, Yang Y, Randol-Smith P, Weathers PJ: Integrated green algal technology for bioremediation and biofuel. Bioresour Technol. 2012, 107: 1-9. Tran NH, Bartlett JR, Kannangara GSK, Milev AS, Volk H, Wilson MA: Catalytic upgrading of biorefinery oil from micro-algae. Fuel. 2010, 89: 265-274. 10.1016/j.fuel.2009.08.015. Fadock MN: Carbon profile matching, algae fatty acids and Jet A fuel properties. Guelph Eng J. 2010, 3: 1-8. Yang C, Nie R, Fu J, Hou Z, Lu X: Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil. Bioresour Technol. 2013, 146: 569-573. Olivieri G, Gargano I, Andreozzi R, Marotta R, Marzocchella A, Pinto G, Pollio A: Effects of photobioreactors design and operating conditions on Stichococcus bacillaris biomass and biodiesel production. Biochem Eng J. 2013, 74: 8-14. Neustupa J, Elias M, Sejnohova L: A taxonomic study of two Stichococcus species (Trebouxiophyceae, Chlorophyta) with a starch-enveloped pyrenoid. Nova Hedwigia. 2007, 84: 51-63. 10.1127/0029-5035/2007/0084-0051. Brown LM, Hellebust JA: Some new taxonomic characteristics applied to Stichococcus bacillaris (Chlorophyceae). Can J Bot. 1980, 58: 1405-1411. 10.1139/b80-171. George EA: A note on Stichococcus bacillaris Naeg. and some species of Chlorella as marine algae. J Mar Biol Assoc UK. 1957, 36: 111-114. 10.1017/S0025315400017100. Hayward J: Studies on the growth of Stichococcus bacillaris Naeg in culture. J Mar Biol Assoc. 1974, 54: 261-268. 10.1017/S0025315400058525. Chen Z, He C, Hu H: Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus. Extremophiles. 2012, 16: 127-133. 10.1007/s00792-011-0412-1. Ahmad I, Hellebust JA: Transport and assimilation of nitrogen by Stichococcus bacillaris grown in the presence of methionine sulfoximine. Plant Physiol. 1985, 79: 1125-1126. 10.1104/pp.79.4.1125. Iwasaki I, Hu Q, Kurano N, Miyachi S: Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a 'high-CO2' tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. Photochem Photobiol B. 1998, 44: 184-190. 10.1016/S1011-1344(98)00140-7. Katsaros CI, Varvarigos V, Gachon GMM, Brand J, Motomura T, Nagasato C, Küpper FC: Comparative immunofluorescence and ultrastructural analysis of microtubule organization in Uronema sp., Klebsormidium flaccidum, K. subtilissimum, Stichococcus bacillaris and S. chloranthus (Chlorophyta). Protist. 2011, 162: 315-331. 10.1016/j.protis.2010.10.004. Ahmad I, Hellebust JA: Control of nitrogen assimilation in Stichococcus bacillaris by growth conditions. Can J Bot. 1987, 65: 432-437. 10.1139/b87-052. Hellebust JA, Ahmad I: Nitrogen metabolism and amino acid nutrition in the soil alga Stichococcus bacillaris (Chlorophyceae). J Phycol. 1989, 25: 48-54. 10.1111/j.0022-3646.1989.00048.x. Zhang W, Majidi V: Monitoring the cellular response of Stichococcus bacillaris to exposure of several different metals using in vivo 31P NMR and other spectroscopic techniques. Environ Sci Technol. 1994, 28: 1577-1581. 10.1021/es00058a007. DellaGreca M, Pinto G, Pollio A, Previtera L, Temussi F: Biotransformation of sinapic acid by the green algae Stichococcus bacillaris 155LTAP and Ankistrodesmus braunii C202.7a. Tetrahedron Lett. 2003, 44: 2779-2780. 10.1016/S0040-4039(03)00458-1. Olivieri G, Marzocchella A, Andreozzi R, Pinto G, Pollio A: Biodiesel production from Stichococcus strains at laboratory scale. J Chem Technol Biotechnol. 2011, 86: 776-783. 10.1002/jctb.2586. Lohr M, Schwender J, Polle JEW: Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 2012, 185–186: 9-22. Niehaus TD, Okada S, Devarenne TP, Watt DS, Sviripa V, Chappell J: Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc Natl Acad Sci U S A. 2011, 108: 12260-12265. 10.1073/pnas.1106222108. Yang Y, Xu J, Vail D, Weathers PJ: Ettlia oleoabundans growth and oil production on agricultural anaerobic waste effluents. Bioresour Technol. 2011, 102: 5076-5082. 10.1016/j.biortech.2011.02.014. Handa S, Nakahara M, Tsubota H, Deguchi H, Nakano T: A new aerial alga, Stichococcus ampulliformis sp. nov. (Trebouxiophyceae, Chlorophyta) from Japan. Psychol Res. 2003, 51: 203-210. Quinn J, Winter L, Bradly T: Microalgae bulk growth model with application to industrial scale systems. Bioresour Technol. 2011, 102: 5083-5092. 10.1016/j.biortech.2011.01.019. Thangalazhy-Gopakumar S, Adhikari S, Chattanathan SA, Gupta RB: Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresour Technol. 2012, 118: 150-157. Dembitsky VM, Shkrob I, Dor I: Separation and identification of hydrocarbons and other volatile compounds from cultured blue-green alga Nostoc sp. by gas chromatography-mass spectrometry using serially coupled capillary columns with consecutive nonpolar and semipolar stationary phases. J Chromatogr A. 1999, 862: 221-229. 10.1016/S0021-9673(99)00930-9. Li N, Chang WC, Warui DM, Booker SJ, Krebs C, Bollinger JM: Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry. 2012, 51: 7908-7916. 10.1021/bi300912n. Wang W, Liu J, Lu J: Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels. 2013, 6: 69-10.1186/1754-6834-6-69. Chen B, Ling H, Chang MW: Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels. 2013, 6: 21-10.1186/1754-6834-6-21. Sivakumar G, Yu KW, Paek KY: Production of biomass and ginsenoides from adventitious roots of Panax ginseng in bioreactor cultures. Eng Life Sci. 2005, 5: 333-342. 10.1002/elsc.200520085. Sivakumar G, Medina-Bolivar F, Lay JO, Dolan MC, Condori J, Grubbs SK, Wright SM, Baque MA, Lee EJ, Paek KY: Bioprocess and bioreactor: next generation technology for production of potential plant-based antidiabetic and antioxidant molecules. Curr Med Chem. 2011, 18: 79-90. 10.2174/092986711793979724. Sivakumar G: Bioreactor technology: a novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots. Biotechnol J. 2006, 1: 1419-1427. 10.1002/biot.200600117. Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962, 15: 23-28. Nichols HW, Bold HC: Trichosarcina polymorpha gen. et sp. nov. J Phycol. 1965, 1: 34-38. 10.1111/j.1529-8817.1965.tb04552.x. Sivakumar G, Liu C, Towler MJ, Weathers PJ: Biomass production of hairy roots of Artemisia annua and Arachis hypogea in a scaled-up mist bioreactor. Biotechnol Bioeng. 2010, 107: 802-813. 10.1002/bit.22892. Jones J, Manning S, Montoya M, Keller K, Poenie M: Extraction of algal lipids and their analysis by HPLC and mass spectrometry. J Am Oil Chem Soc. 2012, 89: 1371-1381. International AOAC: AOAC Official Method 996.06: Fat (Total, Saturated, and Unsaturated) in Foods. Hydrolytic Extraction Gas Chromatography Method. 2001, Gaithersburg, MD: AOAC International International AOAC: AOCS Official Method Ce 1 h-05: Determination of cis-, trans-, Saturated, Monounsaturated and Polyunsaturated Fatty Acids in Vegetable or Nonruminant Animal Oils and Fats by Capillary GLC. 2005, Gaithersburg, MD: AOAC International