MOF Capacitates Cyclodextrin to Mega-Load Mode for High-Efficient Delivery of Valsartan

Springer Science and Business Media LLC - Tập 36 - Trang 1-13 - 2019
Wei Zhang1,2, Tao Guo2, Caifen Wang2, Yuanzhi He2, Xi Zhang3, Guangyu Li3, Yizhi Chen4, Jun Li4, Yangjing Lin4, Xu Xu1, Li Wu2, Suxia Zhang1, Jiwen Zhang1,2
1School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
2Center for Drug Delivery Systems Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
3Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
4Hainan Hualon Pharmaceutical Co., Ltd, Haikou, China

Tóm tắt

To investigate the mechanism of enhancing solubility and bioavailability of water-insoluble drug, valsartan (VAL), with being mega-loaded by cyclodextrin metal organic framework (CD-MOF). VAL was successfully mega-loaded into CD-MOF by magnetic agitation of VAL in ethanolic solution. Characterizations including powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), synchrotron radiation-based Fourier transform-infrared spectroscopy (SR-FTIR) 13C solid-state nuclear magnetic resonance spectroscopy ( 13C SS-NMR), nitrogen gas adsorption, and small-angle X-ray scattering (SAXS) were carried out to confirm the mechanism and incorporation behavior of VAL in CD-MOF. Ball milling process combined with molecular modeling was also used to confirm the mechanism. Improvement of bioavailability in vivo was confirmed by pharmacokinetic experiment in beagles. As a carrier with payload 150% higher than conventional CD complexation, CD-MOF included molecules of VAL as complexations in the chambers of (γ-CD)2, and nanoclusters in the confined spherical cages of (γ-CD)6 confirmed by SAXS and 13C SS-NMR. Ball milling combined with molecular modeling inferred that the reduced release rate of the milled CD-MOF with ultrahigh drug payload was mainly due to the partial aggregation of the VAL nanoclusters. The molecules of VAL as nanoclusters in the cages of (γ-CD)6 are critical in dramatically improving the apparent solubility (39.5-fold) and oral bioavailability (1.9-fold) of VAL in contrast to γ-CD inclusion. The new understanding of drug nanoclusters in CD-MOF will help to design more efficient drug delivery systems using CD-MOF carrier with nanocavities.

Tài liệu tham khảo

Crini G. Review: a history of Cyclodextrins. Chem Rev. 2014;114(21):10940–75. Prochowicz D, Kornowicz A, Justyniak I, Lewinski J. Metal complexes based on native Cyclodextrins: synthesis and structural diversity. Coordin Chem Rev. 2016;306:331–45. Bilensoy E, Hincal AA. Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin Drug Deliv. 2009;6(11):1161–73. Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations II: Solubilization, binding constant, and complexation efficiency. Drug Discov Today. 2016;21(2):363–8. Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supramolecular polymers. Chem Soc Rev. 2009;38(4):875–22. Mejia AR, Graña SL, Verboom W, Huskens J. Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J Mater Chem B. 2017;5(1):36–52. Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AM, Yaghi OM, et al. Metal-organic frameworks from edible natural products. Angew Chem. 2010;49(46):8630–4. Singh V, Guo T, Xu H, Wu L, Gu J, Wu C, et al. Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding. Chem Commun. 2017;53(66):9246–9. Gassensmith JJ, Furukawa H, Smaldon RA, Forgan RS, Botros YY, Yaghi OM, et al. Strong and reversible binding of carbon dioxide in a green metal-organic framework. J Am Chem Soc. 2011;133(39):15312–5. Wu D, Gassensmith JJ, Gouvea D, Ushakov S, Stoddart JF, Navrotsky A. Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. J Am Chem Soc. 2013;135(18):6790–3. Wang L, Liang X, Chang Z, Ding L, Zhang S, Li B. Effective formaldehyde capture by green Cyclodextrin-based metal-organic framework. ACS Appl Mater Interfaces. 2018;10(1):42–6. Michida W, Ezaki M, Sakuragi M, Guan GQ, Kusakabe K. Crystal growth of Cyclodextrin-based metal-organic framework with inclusion of Ferulic acid. Cryst Res Technol. 2015;50(7):556–9. Moussa Z, Hmadeh M, Abiad MG, Dib OH, Patra D. Encapsulation of curcumin in Cyclodextrin-metal organic frameworks: dissociation of loaded CD-MOFs enhances stability of curcumin. Food Chem. 2016;212:485–94. Forgan RS, Smaldone RA, Gassensmith JJ, Furukawa H, Cordes DB, Li Q, et al. Nanoporous carbohydrate metal-organic frameworks. J Am Chem Soc. 2012;134(1):406–17. Liu B, Li H, Xu X, Li X, Lv N, Singh V, et al. Optimized synthesis and crystalline stability of gamma-Cyclodextrin metal-organic frameworks for drug adsorption. Int J Pharm. 2016;514(1):212–9. Liu B, He Y, Han L, Singh V, Xu X, Guo T, et al. Microwave-assisted rapid synthesis of γ-Cyclodextrin metal–organic frameworks for size control and efficient drug loading. Cryst Growth Des. 2017;17(4):1654–60. Li H, Lv N, Li X, Liu B, Feng J, Ren X, et al. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale. 2017;9(22):7454–63. Li X, Guo T, Lachmanski L, Manoli F, Menendez-Miranda M, Manet I, et al. Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: study of morphology and chemical composition of individual particles. Int J Pharm. 2017;531(2):424–32. Xu X, Wang C, Li H, Li X, Liu B, Singh V, et al. Evaluation of drug loading capabilities of gamma-Cyclodextrin-metal organic frameworks by high performance liquid chromatography. J Chromatogr A. 2017;1488:37–44. Lv N, Guo T, Liu B, Wang C, Singh V, Xu X, et al. Improvement in thermal stability of sucralose by gamma-Cyclodextrin metal-organic frameworks. Pharm Res. 2017;34(2):269–78. Zhang G, Meng F, Guo Z, Guo T, Peng H, Xiao J, et al. Enhanced stability of vitamin a palmitate microencapsulated by γ-Cyclodextrin metal-organic frameworks. J Microencapsul. 2018;35(3):249–58. He Y, Zhang W, Guo T, Zhang G, Qin W, Zhang L, et al. Drug nanoclusters formed in confined Nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of Azilsartan. Acta Pharm Sin B. 2019;9(1):97–106. Cravotto G, Caporaso M, Jicsinszky L, Martina K. Enabling technologies and green processes in Cyclodextrin chemistry. Beilstein J Org Chem. 2016;12:278–94. Ueda K, Higashi K, Moribe K. Application of solid-state NMR Relaxometry for characterization and formulation optimization of grinding-induced drug nanoparticle. Mol Pharm. 2016;13(3):852–62. Ali MH, Navarro AR, Martinez J, Lamaty F, Carboni M, Bantreil X. Synthesis and post-synthetic modification of UiO-67 type metal-organic frameworks by Mechanochemistry. Mater Lett. 2017;197:171–4. Friščić T, Halasz I, Štrukil V, Eckert MM, Dinnebier RE. Clean and efficient synthesis using Mechanochemistry: coordination polymers, metal-organic frameworks and Metallodrugs. Croat Chem Acta. 2012;85(3):367–78. Bennett TD, Cheetham AK. Amorphous metal-organic frameworks. Acc Chem Res. 2014;47(5):1555–62. Bennett TD, Saines PJ, Keen DA, Tan JC, Cheetham AK. Ball-milling-induced Amorphization of Zeolitic Imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. Chemistry. 2013;19(22):7049–55. Han L, Guo T, Guo Z, Wang C, Zhang W, Shakya S, et al. Molecular mechanism of loading sulfur hexafluoride in gamma-Cyclodextrin metal-organic framework. J Phys Chem B. 2018;122(20):5225–33. Cole BK, Keller SR, Wu R, Carter JD, Nadler JL, Nunemaker CS. Valsartan protects pancreatic islets and adipose tissue from the inflammatory and metabolic consequences of a high-fat diet in mice. Hypertension. 2010;55(3):715–21. Sunkara G, Bende G, Mendonza AE, Solar YS, Biswal S, Neelakantham S, et al. Bioavailability of valsartan Oral dosage forms. Clin Pharmacol Drug Dev. 2014;3(2):132–8. Chadha R, Bala M, Arora P, Jain DV, Pissurlenkar RR, Coutinho EC. Valsartan inclusion by methyl-beta-Cyclodextrin: thermodynamics, molecular modelling, tween 80 effect and evaluation. Carbohydr Polym. 2014;103:300–9. Cappello B, Maio CD, Iervolino M, Miro A. Improvement of solubility and stability of valsartan by Hydroxypropyl-\boldbeta-Cyclodextrin. J Incl Phenom Macro. 2005;54(3–4):289–94. Singh SK, Vuddanda PR, Singh S, Srivastava AK. A comparison between use of spray and freeze drying techniques for preparation of solid self-microemulsifying formulation of valsartan and in vitro and in vivo evaluation. Biomed Res Int. 2013;2013:909045–58. Yan YD, Sung JD, Kim KD, Kim DW, Kim JQ, Lee BJ, et al. Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. Int J Pharm. 2012;422(1–2):202–10. Cao S, Bennett TD, Keen DA, Goodwin AL, Cheetham AK. Amorphization of the prototypical Zeolitic Imidazolate framework ZIF-8 by ball-milling. Chem Commun. 2012;48(63):7805–7. Wang J, Wang X, Lu L, Mei X. Highly crystalline forms of valsartan with superior physicochemical stability. Cryst Growth Des. 2013;13:3261–9.