MOF Capacitates Cyclodextrin to Mega-Load Mode for High-Efficient Delivery of Valsartan
Tóm tắt
To investigate the mechanism of enhancing solubility and bioavailability of water-insoluble drug, valsartan (VAL), with being mega-loaded by cyclodextrin metal organic framework (CD-MOF). VAL was successfully mega-loaded into CD-MOF by magnetic agitation of VAL in ethanolic solution. Characterizations including powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), synchrotron radiation-based Fourier transform-infrared spectroscopy (SR-FTIR) 13C solid-state nuclear magnetic resonance spectroscopy ( 13C SS-NMR), nitrogen gas adsorption, and small-angle X-ray scattering (SAXS) were carried out to confirm the mechanism and incorporation behavior of VAL in CD-MOF. Ball milling process combined with molecular modeling was also used to confirm the mechanism. Improvement of bioavailability in vivo was confirmed by pharmacokinetic experiment in beagles. As a carrier with payload 150% higher than conventional CD complexation, CD-MOF included molecules of VAL as complexations in the chambers of (γ-CD)2, and nanoclusters in the confined spherical cages of (γ-CD)6 confirmed by SAXS and 13C SS-NMR. Ball milling combined with molecular modeling inferred that the reduced release rate of the milled CD-MOF with ultrahigh drug payload was mainly due to the partial aggregation of the VAL nanoclusters. The molecules of VAL as nanoclusters in the cages of (γ-CD)6 are critical in dramatically improving the apparent solubility (39.5-fold) and oral bioavailability (1.9-fold) of VAL in contrast to γ-CD inclusion. The new understanding of drug nanoclusters in CD-MOF will help to design more efficient drug delivery systems using CD-MOF carrier with nanocavities.
Tài liệu tham khảo
Crini G. Review: a history of Cyclodextrins. Chem Rev. 2014;114(21):10940–75.
Prochowicz D, Kornowicz A, Justyniak I, Lewinski J. Metal complexes based on native Cyclodextrins: synthesis and structural diversity. Coordin Chem Rev. 2016;306:331–45.
Bilensoy E, Hincal AA. Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin Drug Deliv. 2009;6(11):1161–73.
Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations II: Solubilization, binding constant, and complexation efficiency. Drug Discov Today. 2016;21(2):363–8.
Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supramolecular polymers. Chem Soc Rev. 2009;38(4):875–22.
Mejia AR, Graña SL, Verboom W, Huskens J. Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J Mater Chem B. 2017;5(1):36–52.
Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AM, Yaghi OM, et al. Metal-organic frameworks from edible natural products. Angew Chem. 2010;49(46):8630–4.
Singh V, Guo T, Xu H, Wu L, Gu J, Wu C, et al. Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding. Chem Commun. 2017;53(66):9246–9.
Gassensmith JJ, Furukawa H, Smaldon RA, Forgan RS, Botros YY, Yaghi OM, et al. Strong and reversible binding of carbon dioxide in a green metal-organic framework. J Am Chem Soc. 2011;133(39):15312–5.
Wu D, Gassensmith JJ, Gouvea D, Ushakov S, Stoddart JF, Navrotsky A. Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. J Am Chem Soc. 2013;135(18):6790–3.
Wang L, Liang X, Chang Z, Ding L, Zhang S, Li B. Effective formaldehyde capture by green Cyclodextrin-based metal-organic framework. ACS Appl Mater Interfaces. 2018;10(1):42–6.
Michida W, Ezaki M, Sakuragi M, Guan GQ, Kusakabe K. Crystal growth of Cyclodextrin-based metal-organic framework with inclusion of Ferulic acid. Cryst Res Technol. 2015;50(7):556–9.
Moussa Z, Hmadeh M, Abiad MG, Dib OH, Patra D. Encapsulation of curcumin in Cyclodextrin-metal organic frameworks: dissociation of loaded CD-MOFs enhances stability of curcumin. Food Chem. 2016;212:485–94.
Forgan RS, Smaldone RA, Gassensmith JJ, Furukawa H, Cordes DB, Li Q, et al. Nanoporous carbohydrate metal-organic frameworks. J Am Chem Soc. 2012;134(1):406–17.
Liu B, Li H, Xu X, Li X, Lv N, Singh V, et al. Optimized synthesis and crystalline stability of gamma-Cyclodextrin metal-organic frameworks for drug adsorption. Int J Pharm. 2016;514(1):212–9.
Liu B, He Y, Han L, Singh V, Xu X, Guo T, et al. Microwave-assisted rapid synthesis of γ-Cyclodextrin metal–organic frameworks for size control and efficient drug loading. Cryst Growth Des. 2017;17(4):1654–60.
Li H, Lv N, Li X, Liu B, Feng J, Ren X, et al. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale. 2017;9(22):7454–63.
Li X, Guo T, Lachmanski L, Manoli F, Menendez-Miranda M, Manet I, et al. Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: study of morphology and chemical composition of individual particles. Int J Pharm. 2017;531(2):424–32.
Xu X, Wang C, Li H, Li X, Liu B, Singh V, et al. Evaluation of drug loading capabilities of gamma-Cyclodextrin-metal organic frameworks by high performance liquid chromatography. J Chromatogr A. 2017;1488:37–44.
Lv N, Guo T, Liu B, Wang C, Singh V, Xu X, et al. Improvement in thermal stability of sucralose by gamma-Cyclodextrin metal-organic frameworks. Pharm Res. 2017;34(2):269–78.
Zhang G, Meng F, Guo Z, Guo T, Peng H, Xiao J, et al. Enhanced stability of vitamin a palmitate microencapsulated by γ-Cyclodextrin metal-organic frameworks. J Microencapsul. 2018;35(3):249–58.
He Y, Zhang W, Guo T, Zhang G, Qin W, Zhang L, et al. Drug nanoclusters formed in confined Nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of Azilsartan. Acta Pharm Sin B. 2019;9(1):97–106.
Cravotto G, Caporaso M, Jicsinszky L, Martina K. Enabling technologies and green processes in Cyclodextrin chemistry. Beilstein J Org Chem. 2016;12:278–94.
Ueda K, Higashi K, Moribe K. Application of solid-state NMR Relaxometry for characterization and formulation optimization of grinding-induced drug nanoparticle. Mol Pharm. 2016;13(3):852–62.
Ali MH, Navarro AR, Martinez J, Lamaty F, Carboni M, Bantreil X. Synthesis and post-synthetic modification of UiO-67 type metal-organic frameworks by Mechanochemistry. Mater Lett. 2017;197:171–4.
Friščić T, Halasz I, Štrukil V, Eckert MM, Dinnebier RE. Clean and efficient synthesis using Mechanochemistry: coordination polymers, metal-organic frameworks and Metallodrugs. Croat Chem Acta. 2012;85(3):367–78.
Bennett TD, Cheetham AK. Amorphous metal-organic frameworks. Acc Chem Res. 2014;47(5):1555–62.
Bennett TD, Saines PJ, Keen DA, Tan JC, Cheetham AK. Ball-milling-induced Amorphization of Zeolitic Imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. Chemistry. 2013;19(22):7049–55.
Han L, Guo T, Guo Z, Wang C, Zhang W, Shakya S, et al. Molecular mechanism of loading sulfur hexafluoride in gamma-Cyclodextrin metal-organic framework. J Phys Chem B. 2018;122(20):5225–33.
Cole BK, Keller SR, Wu R, Carter JD, Nadler JL, Nunemaker CS. Valsartan protects pancreatic islets and adipose tissue from the inflammatory and metabolic consequences of a high-fat diet in mice. Hypertension. 2010;55(3):715–21.
Sunkara G, Bende G, Mendonza AE, Solar YS, Biswal S, Neelakantham S, et al. Bioavailability of valsartan Oral dosage forms. Clin Pharmacol Drug Dev. 2014;3(2):132–8.
Chadha R, Bala M, Arora P, Jain DV, Pissurlenkar RR, Coutinho EC. Valsartan inclusion by methyl-beta-Cyclodextrin: thermodynamics, molecular modelling, tween 80 effect and evaluation. Carbohydr Polym. 2014;103:300–9.
Cappello B, Maio CD, Iervolino M, Miro A. Improvement of solubility and stability of valsartan by Hydroxypropyl-\boldbeta-Cyclodextrin. J Incl Phenom Macro. 2005;54(3–4):289–94.
Singh SK, Vuddanda PR, Singh S, Srivastava AK. A comparison between use of spray and freeze drying techniques for preparation of solid self-microemulsifying formulation of valsartan and in vitro and in vivo evaluation. Biomed Res Int. 2013;2013:909045–58.
Yan YD, Sung JD, Kim KD, Kim DW, Kim JQ, Lee BJ, et al. Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. Int J Pharm. 2012;422(1–2):202–10.
Cao S, Bennett TD, Keen DA, Goodwin AL, Cheetham AK. Amorphization of the prototypical Zeolitic Imidazolate framework ZIF-8 by ball-milling. Chem Commun. 2012;48(63):7805–7.
Wang J, Wang X, Lu L, Mei X. Highly crystalline forms of valsartan with superior physicochemical stability. Cryst Growth Des. 2013;13:3261–9.