Neurodegeneration Alters Metabolic Profile and Sirt 1 Signaling in High-Fat-Induced Obese Mice
Tóm tắt
Different factors may contribute to the development of neurodegenerative diseases. Among them, metabolic syndrome (MS), which has reached epidemic proportions, has emerged as a potential element that may be involved in neurodegeneration. Furthermore, studies have shown the importance of the sirtuin family in neuronal survival and MS, which opens the possibility of new pharmacological targets. This study investigates the influence of sirtuin metabolic pathways by examining the functional capacities of glucose-induced obesity in an excitotoxic state induced by a quinolinic acid (QA) animal model. Mice were divided into two groups that received different diets for 8 weeks: one group received a regular diet, and the other group received a high-fat diet (HF) to induce MS. The animals were submitted to a stereotaxic surgery and subdivided into four groups: Standard (ST), Standard-QA (ST-QA), HF and HF-QA. The QA groups were given a 250 nL quinolinic acid injection in the right striatum and PBS was injected in the other groups. Obese mice presented with a weight gain of 40 % more than the ST group beyond acquiring an insulin resistance. QA induced motor impairment and neurodegeneration in both ST-QA and HF-QA, although no difference was observed between these groups. The HF-QA group showed a reduction in adiposity when compared with the groups that received PBS. Therefore, the HF-QA group demonstrated a commitment-dependent metabolic pathway. The results suggest that an obesogenic diet does not aggravate the neurodegeneration induced by QA. However, the excitotoxicity induced by QA promotes a sirtuin pathway impairment that contributes to metabolic changes.
Tài liệu tham khảo
citation_journal_title=BMC Public Health; citation_title=The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis; citation_author=DP Guh, W Zhang, N Bansback; citation_volume=9; citation_publication_date=2009; citation_pages=88; citation_doi=10.1186/1471-2458-9-88; citation_id=CR1
citation_journal_title=Physiol Behav; citation_title=Dietary (sensory) variety and energy balance; citation_author=MA McCrory, A Burke, SB Roberts; citation_volume=107; citation_publication_date=2012; citation_pages=576-583; citation_doi=10.1016/j.physbeh.2012.06.012; citation_id=CR2
citation_journal_title=Hypertension; citation_title=Oral formulation of angiotensin-(1–7) improves lipid metabolism and prevents high-fat diet-induced hepatic steatosis and inflammation in mice; citation_author=JD Feltenberger, JMO Andrade, A Paraíso; citation_volume=62; citation_publication_date=2013; citation_pages=324-330; citation_doi=10.1161/HYPERTENSIONAHA.111.00919; citation_id=CR3
Klein S, Burke LE, Bray G a, et al. (2004) Clinical implications of obesity with specific focus on cardiovascular disease: a statement for professionals from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Found. Circulation 110:2952–67. doi: 10.1161/01.CIR.0000145546.97738.1E
citation_journal_title=Lancet; citation_title=Obesity; citation_author=DW Haslam, WPT James; citation_volume=366; citation_publication_date=2005; citation_pages=1197-1209; citation_doi=10.1016/S0140-6736(05)67483-1; citation_id=CR5
citation_journal_title=Peptides; citation_title=Peptides oral Angiotensin-(1–7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-B in rats fed with high-fat diet; citation_author=SHS Santos, JMO Andrade, LR Fernandes; citation_volume=46; citation_publication_date=2013; citation_pages=47-52; citation_doi=10.1016/j.peptides.2013.05.010; citation_id=CR6
citation_journal_title=Nutrients; citation_title=Shared neuropathological characteristics of obesity, type 2 diabetes and Alzheimer’s disease: impacts on cognitive decline; citation_author=JM Walker, FE Harrison; citation_volume=7; citation_publication_date=2015; citation_pages=7332-7357; citation_doi=10.3390/nu7095341; citation_id=CR7
citation_journal_title=Neurology; citation_title=Central obesity and increased risk of dementia more than three decades later; citation_author=RA Whitmer, DR Gustafson, E Barrett-Connor; citation_volume=71; citation_publication_date=2008; citation_pages=1057-1064; citation_doi=10.1212/01.wnl.0000306313.89165.ef; citation_id=CR8
citation_journal_title=Neurology; citation_title=Midlife adiposity and the future risk of Parkinson’s disease; citation_author=RD Abbott, GW Ross, LR White; citation_volume=59; citation_publication_date=2002; citation_pages=1051-1057; citation_doi=10.1212/WNL.59.7.1051; citation_id=CR9
10. Verdile G, Keane KN, Cruzat VF, et al. (2015) Inflammation and oxidative stress: The molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediators Inflamm. doi: 10.1155/2015/105828
citation_journal_title=Front Cell Neurosci; citation_title=High fat diet and inflammation—modulation of haptoglobin level in rat brain; citation_author=MS Spagnuolo, MP Mollica, B Maresca; citation_volume=9; citation_publication_date=2015; citation_pages=479; citation_doi=10.3389/fncel.2015.00479; citation_id=CR11
citation_journal_title=J Neuroendocrinol; citation_title=Huntington’s disease does not appear to increase the risk of diabetes mellitus; citation_author=TW Boesgaard, TT Nielsen, K Josefsen; citation_volume=21; citation_publication_date=2009; citation_pages=770-776; citation_doi=10.1111/j.1365-2826.2009.01898.x; citation_id=CR12
citation_journal_title=J Biol Chem; citation_title=Euglycemic agent-mediated hypothalamic transcriptomic manipulation in the N171-82Q model of Huntington disease is related to their physiological efficacy; citation_author=B Martin, W Chadwick, W Cong; citation_volume=287; citation_publication_date=2012; citation_pages=31766-31782; citation_doi=10.1074/jbc.M112.387316; citation_id=CR13
citation_journal_title=Neurosci Lett; citation_title=Metformin therapy in a transgenic mouse model of Huntington’s disease; citation_author=TC Ma, JL Buescher, B Oatis; citation_volume=411; citation_publication_date=2007; citation_pages=98-103; citation_doi=10.1016/j.neulet.2006.10.039; citation_id=CR14
citation_journal_title=J Neurochem; citation_title=Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease; citation_author=J Jin, J Albertz, Z Guo; citation_volume=125; citation_publication_date=2013; citation_pages=410-419; citation_doi=10.1111/jnc.12190; citation_id=CR15
citation_journal_title=J Neurochem; citation_title=Energetic dysfunction in quinolinic acid-lesioned rat striatum; citation_author=YM Bordelon, MF Chesselet, D Nelson; citation_volume=69; citation_publication_date=1997; citation_pages=1629-1639; citation_doi=10.1046/j.1471-4159.1997.69041629.x; citation_id=CR16
citation_journal_title=Brain Res; citation_title=Attenuation of proinflammatory cytokines and apoptotic process by verapamil and diltiazem against quinolinic acid induced Huntington like alterations in rats; citation_author=H Kalonia, P Kumar, A Kumar; citation_volume=1372; citation_publication_date=2011; citation_pages=115-126; citation_doi=10.1016/j.brainres.2010.11.060; citation_id=CR17
Schwarz M, Whetsell JOJ, Mangano R (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science (80-) 219:316–8.
citation_journal_title=Nat Rev Neurosci; citation_title=Choosing an animal model for the study of Huntington’s disease; citation_author=MA Pouladi, AJ Morton, MR Hayden; citation_volume=14; citation_publication_date=2013; citation_pages=708-721; citation_doi=10.1038/nrn3570; citation_id=CR19
citation_journal_title=Brain Res Bull; citation_title=Probucol modulates oxidative stress and excitotoxicity in Huntington’s disease models in vitro; citation_author=D Colle, JM Hartwig, FA Antunes Soares, M Farina; citation_volume=87; citation_publication_date=2012; citation_pages=397-405; citation_doi=10.1016/j.brainresbull.2012.01.003; citation_id=CR20
citation_journal_title=Nat Med; citation_title=Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets; citation_author=M Jiang, J Wang, J Fu; citation_volume=18; citation_publication_date=2012; citation_pages=153-158; citation_doi=10.1038/nm.2558; citation_id=CR21
citation_journal_title=Mol Neurobiol; citation_title=Brain activation of SIRT1: role in neuropathology; citation_author=AF Paraíso, KL Mendes, SHS Santos; citation_volume=48; citation_publication_date=2013; citation_pages=681-689; citation_doi=10.1007/s12035-013-8459-x; citation_id=CR22
citation_journal_title=Nat Med; citation_title=Finding a sirtuin truth in Huntington’s disease; citation_author=AR Spada; citation_volume=18; citation_publication_date=2012; citation_pages=24-26; citation_doi=10.1038/nm.2624; citation_id=CR23
citation_journal_title=Exp Neurol; citation_title=Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease; citation_author=DJ Ho, NY Calingasan, E Wille; citation_volume=225; citation_publication_date=2010; citation_pages=74-84; citation_doi=10.1016/j.expneurol.2010.05.006; citation_id=CR24
citation_journal_title=Mitochondrion; citation_title=Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3; citation_author=J Brenmoehl, A Hoeflich; citation_volume=13; citation_publication_date=2013; citation_pages=755-761; citation_doi=10.1016/j.mito.2013.04.002; citation_id=CR25
citation_journal_title=Peptides; citation_title=Peptides cross talk between angiotensin- (1 – 7)/Mas axis and sirtuins in adipose tissue and metabolism of high-fat feed mice; citation_author=JMO Andrade, AF Paraiso, ZM Garcia; citation_volume=55; citation_publication_date=2014; citation_pages=158-165; citation_doi=10.1016/j.peptides.2014.03.006; citation_id=CR26
citation_journal_title=Cell Metab; citation_title=Metabolic control through the PGC-1 family of transcription coactivators; citation_author=J Lin, C Handschin, BM Spiegelman; citation_volume=1; citation_publication_date=2005; citation_pages=361-370; citation_doi=10.1016/j.cmet.2005.05.004; citation_id=CR27
citation_journal_title=FEBS Lett; citation_title=Metabolic adaptations through the PGC-1 a and SIRT1 pathways; citation_author=JT Rodgers, C Lerin, Z Gerhart-hines, P Puigserver; citation_volume=582; citation_publication_date=2008; citation_pages=46-53; citation_doi=10.1016/j.febslet.2007.11.034; citation_id=CR28
citation_journal_title=Adv Physiol Educ; citation_title=PGC-1a : a key regulator of energy metabolism; citation_author=H Liang, WF Ward; citation_volume=30; citation_publication_date=2006; citation_pages=145-151; citation_doi=10.1152/advan.00052.2006; citation_id=CR29
citation_journal_title=J Neuroinflammation; citation_title=Secret talk between adipose tissue and central nervous system via secreted factors—an emerging frontier in the neurodegenerative research; citation_author=A Parimisetty, A-C Dorsemans, R Awada; citation_volume=13; citation_publication_date=2016; citation_pages=67; citation_doi=10.1186/s12974-016-0530-x; citation_id=CR30
citation_journal_title=J Neuroendocrinol n/a–n/a; citation_title=Neuroprotective effects of endurance exercise against high fat diet-induced hippocampal neuroinflammation; citation_author=E-B Kang, J-H Koo, Y-C Jang; citation_publication_date=2016; citation_id=CR31
citation_journal_title=Neuroscience; citation_title=Specific inhibition of kynurenate synthesis enhances extracellular dopamine levels in the rodent striatum; citation_author=L Amori, HQ Wu, M Marinozzi; citation_volume=159; citation_publication_date=2009; citation_pages=196-203; citation_doi=10.1016/j.neuroscience.2008.11.055; citation_id=CR32
citation_journal_title=Neurotox Res; citation_title=Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons; citation_author=N Braidy, R Grant, S Adams; citation_volume=16; citation_publication_date=2009; citation_pages=77-86; citation_doi=10.1007/s12640-009-9051-z; citation_id=CR33
citation_journal_title=Eur J Pharmacol; citation_title=Minocycline modulates neuroprotective effect of hesperidin against quinolinic acid induced Huntington’s disease like symptoms in rats: behavioral, biochemical, cellular and histological evidences; citation_author=A Kumar, T Chaudhary, J Mishra; citation_volume=720; citation_publication_date=2013; citation_pages=16-28; citation_doi=10.1016/j.ejphar.2013.10.057; citation_id=CR34
Mishra J, Kumar A (2014) Improvement of mitochondrial function by paliperidone attenuates quinolinic acid-induced behavioural and neurochemical alterations in rats: implications in Huntington’s disease. Neurotox Res 363–381. doi:
10.1007/s12640-014-9469-9
citation_journal_title=Acta Pharmacol Sin; citation_title=Caspase-1 inhibitor Ac-YVAD-CHO attenuates quinolinic acid-induced increases in p53 and apoptosis in rat striatum; citation_author=Y Cao, ZL Gu, F Lin; citation_volume=26; citation_publication_date=2005; citation_pages=150-154; citation_doi=10.1111/j.1745-7254.2005.00525.x; citation_id=CR36
citation_journal_title=Obesity; citation_title=The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation; citation_author=M Favennec, B Hennart, R Caiazzo; citation_volume=23; citation_publication_date=2015; citation_pages=2066-2074; citation_doi=10.1002/oby.21199; citation_id=CR37
citation_journal_title=Eur J Neurosci; citation_title=Cytoplasmic calcium mediates oxidative damage in an excitotoxic/energetic deficit synergic model in rats; citation_author=V Pérez-De La Cruz, M Konigsberg, J Pedraza-Chaverri; citation_volume=27; citation_publication_date=2008; citation_pages=1075-1085; citation_doi=10.1111/j.1460-9568.2008.06088.x; citation_id=CR38
citation_journal_title=PLoS One; citation_title=Transplantation of induced pluripotent stem cells improves functional recovery in Huntington’s disease rat model; citation_author=S Mu, J Wang, G Zhou; citation_publication_date=2014; citation_id=CR39
citation_journal_title=Neurosci Res; citation_title=In vitro effect of quinolinic acid on energy metabolism in brain of young rats; citation_author=PF Schuck, A Tonin, FG Costa; citation_volume=57; citation_publication_date=2007; citation_pages=277-288; citation_doi=10.1016/j.neures.2006.10.013; citation_id=CR40
citation_journal_title=Eur J Pharmacol; citation_title=Targeting oxidative stress attenuates malonic acid induced Huntington like behavioral and mitochondrial alterations in rats; citation_author=H Kalonia, P Kumar, A Kumar; citation_volume=634; citation_publication_date=2010; citation_pages=46-52; citation_doi=10.1016/j.ejphar.2010.02.031; citation_id=CR41
Török N, Majláth Z, Fülöp F, Toldi J VL (2015) Brain ageing and disorders of the central nervous system: kynurenines and drug metabolism. Curr Drug Metab 412–429
citation_journal_title=Metab Brain Dis; citation_title=Neurodegenerative disease and obesity: what is the role of weight loss and bariatric interventions?; citation_author=H Ashrafian, L Harling, A Darzi, T Athanasiou; citation_volume=28; citation_publication_date=2013; citation_pages=341-353; citation_doi=10.1007/s11011-013-9412-4; citation_id=CR43
citation_journal_title=Nat Med; citation_title=Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway; citation_author=H Jeong, DE Cohen, L Cui; citation_volume=18; citation_publication_date=2011; citation_pages=159-165; citation_doi=10.1038/nm.2559; citation_id=CR44
citation_journal_title=Biochim Biophys Acta; citation_title=Therapeutic role of sirtuins in neurodegenerative disease; citation_author=TF Outeiro, O Marques, A Kazantsev; citation_volume=1782; citation_publication_date=2008; citation_pages=363-369; citation_doi=10.1016/j.bbadis.2008.02.010; citation_id=CR45
citation_journal_title=Cell; citation_title=Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration; citation_author=L Cui, H Jeong, F Borovecki; citation_volume=127; citation_publication_date=2006; citation_pages=59-69; citation_doi=10.1016/j.cell.2006.09.015; citation_id=CR46
citation_journal_title=Cell; citation_title=Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice; citation_author=J Lin, PH Wu, PT Tarr; citation_volume=119; citation_publication_date=2004; citation_pages=121-135; citation_doi=10.1016/j.cell.2004.09.013; citation_id=CR47
citation_journal_title=Cell Metab; citation_title=Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration; citation_author=P Weydt, VV Pineda, AE Torrence; citation_volume=4; citation_publication_date=2006; citation_pages=349-362; citation_doi=10.1016/j.cmet.2006.10.004; citation_id=CR48
citation_journal_title=Mol Cell Neurosci; citation_title=Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases; citation_author=RK Chaturvedi, MF Beal; citation_volume=55; citation_publication_date=2013; citation_pages=101-114; citation_doi=10.1016/j.mcn.2012.11.011; citation_id=CR49
citation_journal_title=Neuroscience; citation_title=Protective effect of montelukast against quinolinic acid/malonic acid induced neurotoxicity: possible behavioral, biochemical, mitochondrial and tumor necrosis factor-α level alterations in rats; citation_author=H Kalonia, P Kumar, A Kumar, B Nehru; citation_volume=171; citation_publication_date=2010; citation_pages=284-299; citation_doi=10.1016/j.neuroscience.2010.08.039; citation_id=CR50
citation_journal_title=Sci Exch; citation_title=Still un-sirtuin; citation_author=L Osherovich; citation_volume=5; citation_publication_date=2012; citation_pages=1-3; citation_id=CR51
Pardo PS, Boriek AM (2012) An autoregulatory loop reverts the mechanosensitive Sirt1 induction by EGR1 in skeletal muscle cells. Aging (Albany NY) 4:456–461.
citation_journal_title=Physiology (Bethesda); citation_title=SIRT1: linking adaptive cellular responses to aging-associated changes in organismal physiology; citation_author=D Anastasiou, W Krek; citation_volume=21; citation_publication_date=2006; citation_pages=404-410; citation_doi=10.1152/physiol.00031.2006; citation_id=CR53
Corbi G, Conti V, Russomanno G, et al. (2013) Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 4 NOV:1–14. doi:
10.3389/fphys.2013.00324
citation_journal_title=Int J Mol Sci; citation_title=Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function; citation_author=CH Tengan, GS Rodrigues, RO Godinho; citation_volume=13; citation_publication_date=2012; citation_pages=17160-17184; citation_doi=10.3390/ijms131217160; citation_id=CR55
citation_journal_title=Cell; citation_title=Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases; citation_author=S Park, F Ahmad, A Philp; citation_volume=148; citation_publication_date=2012; citation_pages=421-433; citation_doi=10.1016/j.cell.2012.01.017; citation_id=CR56
citation_journal_title=Int J Tryptophan Res; citation_title=Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms; citation_author=VPD Cruz, P Carrillo-Mora, A Santamaría; citation_volume=5; citation_publication_date=2013; citation_pages=1-8; citation_id=CR57