Up-regulation of CatSper genes family by selenium
Tóm tắt
CatSper1-4 are a unique family of sperm cation channels, which are exclusively expressed in the testis and play an important role in sperm motility and male fertility. Despite their vital role in male fertility, almost nothing is known about the factors regulating their expression. Here, we investigated the effects of selenium (Se) on the expression of CatSper genes and sperm parameters in aging versus young male mice. Forty 11-13 months aging male mice and forty 2-3 months young adult male mice were used. The animals were divided in two experimental groups: first group including aging males and second group comprising of young adult males, both treated with Se. The experimental groups were injected intra-peritoneally with Se (0.2 mg/kg) daily, for up to 5 weeks. Two other groups, aging and young adult mice without Se treatment were used as controls. All the animals were rapidly sacrificed by cervical dislocation on the days 21, 28, 35 and 42 after Se treatment. Subsequently, the morphology of the collected sperms was analyzed, and one of the testes from each mouse used for semi-quantitative RT-PCR. The significancy of the data was analyzed using ANOVA. Our data revealed that there was a significant up-regulation of CatSper genes in the experimental groups compared to the control ones. Furthermore, the results of sperm analysis showed that the sperm parameters were improved in the aging as well as young adult male mice following Se treatment. Se treatment in the aging subjects could up-regulate the expression of CatSper genes, and therefore results in elevation of sperm motility. Furthermore, Se treatment improved sperm parameters, especially morphology and viability rates.
Tài liệu tham khảo
Darszon A, Lopez-Martinez P, Acevedo JJ, Hernandez-Cruz A, Trevino CL: T-type Ca2+ channels in sperm function. Cell Calcium. 2006, 40: 241-252. 10.1016/j.ceca.2006.04.028.
Qi H, Moran MM, Navarro B, Chong JA, Krapivinsky G, Krapivinsky L, Kirichok Y, Ramsey IS, Quill TA, Clapham DE: All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. PNAS. 2007, 104 (4): 1219-1223. 10.1073/pnas.0610286104.
Asadi MH, Mowla SJ, Nikpoor P: Gene expression profile of CatSper3 and CatSper4 during postnatal development of mouse testis. IBJ. 2006, 10: 111-115.
Nikpoor P, Mowla SJ, Movahedin M, Ziaee SA, Taki T: CatSper gene expression in postnatal development of mouse testis and in subfertile men with deficient sperm motility. Human Reprod. 2004, 19: 124-128. 10.1093/humrep/deh043.
Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE: A sperm ion channel required for sperm motility and male fertility. Nature. 2001, 413: 603-609. 10.1038/35098027.
Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, Garbers DL: Hyperactivated sperm motility driven by CatSper2 is required for fertilization. PNAS. 2003, 100: 14869-14874. 10.1073/pnas.2136654100.
Lobley A, Pierron V, Reynolds L, Allen L, Michalovich D: Identification of human and mouse CatSper3 and CatSper4 genes: Characterisation of a common interaction domain and evidence for experssion in testis. Reprod Biol Endocrinol. 2003, 1: 53-67. 10.1186/1477-7827-1-53.
Jin JL, Odoherty AM, Wang S, Zheng H, Sandres KM, Yan W: CatSper3 and CatSper4 encode two cation channel-like proteins exclusively expressed in the testis. Biol Reprod. 2005, 73: 1235-1242. 10.1095/biolreprod.105.045468.
Jervis KM, Robaire B: The effects of long-term vitamin E treatment on gene expression and oxidative stress damage in the aging brown Norway rat epididymis. Biol Reprod. 2004, 71: 1088-1095. 10.1095/biolreprod.104.028886.
Agarwal A, Nallella KP, Allamaneni SR, Said TM: Role of antioxidant in treatment of male infertility: an overview of the literature. RBM Online. 2004, 8: 616-627.
Kaur R, Kaur K: Effects of dietary selenium on morphology of testis and cauda epididymis in rats. Indian J Pharmacol. 2000, 44: 265-272.
Wu SH, Oldfield JE, Muth OH, Whanger PD, Weswig PH: Effects of selenium on reproduction. Proceeding Western Section, American Society of Animal Science. 1969, 20: 85-89.
Olson GE, Winfrey VP, Hill KE, Burk RF: Sequential development of flagellar defects in spermatids and epididymal spermatozoa of selenium-dificient rats. Reprod. 2004, 127: 335-342. 10.1530/rep.1.00103.
Kidd SA, Eskenazi B, Wyrobex AJ: Effects of male age on semen quality and fertility: a review of the literature. Fertil Steril. 2001, 75: 237-248. 10.1016/S0015-0282(00)01679-4.
Mohammadi Sh, Movahedin M, Mowla SJ: The Effects of Selenium Antioxidant Activity on Sperm Parameters and Testis Structure in Aging and Adult Male Mice. J Reprod Infertil (Persian). 2008, 3 (26): 230-238.
Gan L, Liu Q, Xu H, Zhu Y, Yang XL: Effects of selenium overexposure on glutathione peroxidase and thioredoxin reductase gene expressions and activities. Biol Trace Element Res. 2002, 89: 165-175. 10.1385/BTER:89:2:165.
Shalini S, Banasal MP: Role of selenium in spermatogenesis: differential expression of cjun and cfos in tubular cells of mice testis. Mol cell Biochem. 2006, 292: 27-38. 10.1007/s11010-006-9168-9.