Long Terminal Repeat CRISPR-CAR-Coupled “Universal” T Cells Mediate Potent Anti-leukemic Effects

Molecular Therapy - Tập 26 - Trang 1215-1227 - 2018
Christos Georgiadis1, Roland Preece1, Lauren Nickolay1, Aniekan Etuk1, Anastasia Petrova1, Dariusz Ladon2, Alexandra Danyi3, Neil Humphryes-Kirilov3, Ayokunmi Ajetunmobi3, Daesik Kim4, Jin-Soo Kim4, Waseem Qasim1,2
1Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
2NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
3Desktop Genetics, Ltd., 28 Hanbury Street, London, E1 6QR, UK
4Department of Chemistry, Seoul National University, Seoul, South Korea

Tài liệu tham khảo

Rivière, 2017, Chimeric Antigen Receptors: A Cell and Gene Therapy Perspective, Mol. Ther., 25, 1117, 10.1016/j.ymthe.2017.03.034 Torikai, 2012, A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR, Blood, 119, 5697, 10.1182/blood-2012-01-405365 Provasi, 2012, Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer, Nat. Med., 18, 807, 10.1038/nm.2700 Qasim, 2017, Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells, Sci. Transl. Med., 9, 10.1126/scitranslmed.aaj2013 Poirot, 2015, Multiplex Genome-Edited T-cell Manufacturing Platform for “Off-the-Shelf” Adoptive T-cell Immunotherapies, Cancer Res., 75, 3853, 10.1158/0008-5472.CAN-14-3321 Bertaina, 2014, HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders, Blood, 124, 822, 10.1182/blood-2014-03-563817 Osborn, 2016, Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases, Mol. Ther., 24, 570, 10.1038/mt.2015.197 Ren, 2017, A versatile system for rapid multiplex genome-edited CAR T cell generation, Oncotarget, 8, 17002, 10.18632/oncotarget.15218 Ren, 2016, Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition, Clin. Cancer Res., 23, 2255, 10.1158/1078-0432.CCR-16-1300 Shalem, 2014, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, 343, 84, 10.1126/science.1247005 Adam, 1995, R-region cDNA inserts in retroviral vectors are compatible with virus replication and high-level protein synthesis from the insert, Hum. Gene Ther., 6, 1169, 10.1089/hum.1995.6.9-1169 Szulc, 2006, A versatile tool for conditional gene expression and knockdown, Nat. Methods, 3, 109, 10.1038/nmeth846 Curtin, 2008, Bidirectional promoter interference between two widely used internal heterologous promoters in a late-generation lentiviral construct, Gene Ther., 15, 384, 10.1038/sj.gt.3303105 Hsu, 2014, Development and applications of CRISPR-Cas9 for genome engineering, Cell, 157, 1262, 10.1016/j.cell.2014.05.010 Kleinstiver, 2016, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490, 10.1038/nature16526 Tycko, 2016, Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity, Mol. Cell, 63, 355, 10.1016/j.molcel.2016.07.004 Kim, 2015, Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells, Nat. Methods, 12, 237, 10.1038/nmeth.3284 Tsai, 2015, GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases, Nat. Biotechnol., 33, 187, 10.1038/nbt.3117 Knipping, 2017, Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification, Mol. Ther. Methods Clin. Dev., 4, 213, 10.1016/j.omtm.2017.01.005 Jacoby, 2016, Murine allogeneic CD19 CAR T cells harbor potent antileukemic activity but have the potential to mediate lethal GVHD, Blood, 127, 1361, 10.1182/blood-2015-08-664250 Ghosh, 2017, Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity, Nat. Med., 23, 242, 10.1038/nm.4258 Newrzela, 2008, Resistance of mature T cells to oncogene transformation, Blood, 112, 2278, 10.1182/blood-2007-12-128751 Ran, 2015, In vivo genome editing using Staphylococcus aureus Cas9, Nature, 520, 186, 10.1038/nature14299 Zetsche, 2015, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, 163, 759, 10.1016/j.cell.2015.09.038 Fonfara, 2016, The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA, Nature, 532, 517, 10.1038/nature17945 Ran, 2013, Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, 154, 1380, 10.1016/j.cell.2013.08.021 Maeder, 2013, CRISPR RNA-guided activation of endogenous human genes, Nat. Methods, 10, 977, 10.1038/nmeth.2598 Perez-Pinera, 2013, RNA-guided gene activation by CRISPR-Cas9-based transcription factors, Nat. Methods, 10, 973, 10.1038/nmeth.2600 Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946 Eyquem, 2017, Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection, Nature, 543, 113, 10.1038/nature21405 Dull, 1998, A third-generation lentivirus vector with a conditional packaging system, J. Virol., 72, 8463, 10.1128/JVI.72.11.8463-8471.1998 Demaison, 2002, High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of immunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter, Hum. Gene Ther., 13, 803, 10.1089/10430340252898984 Qasim, 2007, Lentiviral vectors for T-cell suicide gene therapy: preservation of T-cell effector function after cytokine-mediated transduction, Mol. Ther., 15, 355, 10.1038/sj.mt.6300042 Mock, 2016, Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy, Cytotherapy, 18, 1002, 10.1016/j.jcyt.2016.05.009 Brinkman, 2014, Easy quantitative assessment of genome editing by sequence trace decomposition, Nucleic Acids Res., 42, e168, 10.1093/nar/gku936 Kim, 2016, Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq, Genome Res., 26, 406, 10.1101/gr.199588.115