Stable Convergence of Multiple Wiener-Itô Integrals

Springer Science and Business Media LLC - Tập 21 - Trang 527-570 - 2008
Giovanni Peccati1, Murad S. Taqqu2
1Laboratoire de Statistique Théorique et Appliquée, Université Paris VI, Paris, France
2Department of Mathematics, Boston University, Boston, USA

Tóm tắt

We prove sufficient conditions ensuring that a sequence of multiple Wiener-Itô integrals (with respect to a general Gaussian process) converges stably to a mixture of normal distributions. Note that stable convergence is stronger than convergence in distribution. Our key tool is an asymptotic decomposition of contraction kernels, realized by means of increasing families of projection operators. We also use an infinite-dimensional Clark-Ocone formula, as well as a version of the correspondence between “abstract” and “concrete” filtered Wiener spaces, in a spirit similar to that of Üstünel and Zakai (J. Funct. Anal. 143, 10–32, [1997]).

Tài liệu tham khảo

Brodskii, M.S.: Triangular and Jordan Representations of Linear Operators. Transl. Math. Monographs, vol. 32. AMS, Providence (1971) Corcuera, J.M., Nualart, D., Woerner, J.H.C.: Power variation of some integral fractional processes. Bernoulli 12(4), 713–735 (2001) Deheuvels, P., Peccati, G., Yor, M.: On quadratic functionals of the Brownian sheet and related processes. Stoch. Process. Appl. 116, 493–538 (2006) Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002) Feigin, P.D.: Stable convergence of semimartingales. Stoch. Process. Appl. 19, 125–134 (1985) Giraitis, L., Surgailis, D.: CLT and other limit theorems for functionals of Gaussian processes. Z. Wahrsch. Verw. Gebiete 70, 191–212 (1985) Hu, Y., Nualart, D.: Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab. 33(3), 948–983 (2005) Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987) Janson, S.: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge (1997) Kuo, H.-H.: Gaussian Measures in Banach Spaces. LNM, vol. 463. Springer, Berlin (1975) Lipster, R.Sh., Shiryaev, A.N.: A functional central limit theorem for semimartingales. Theory Probab. Appl. XXV, 667–688 (1980) Mayer-Wolf, E., Zakai, M.: The Clark-Ocone formula for vector valued Wiener functionals. J. Funct. Anal. 229, 143–154 (2005) Nourdin, I., Nualart, D.: Central limit theorems for multiple Skorohod integrals. Preprint (2008) Nualart, D.: The Malliavin Calculus and Related Topics. Springer, New York (1995) Nualart, D.: Analysis on Wiener space and anticipating stochastic calculus. In: Lectures on Probability Theory and Statistics. École de probabilités de St. Flour XXV (1995). LNM, vol. 1690, pp. 123–227. Springer, New York (1998) Nualart, D., Peccati, G.: Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33(1), 177–193 (2005) Peccati, G.: On the convergence of multiple random integrals. Stud. Sci. Math. Hung. 37, 429–470 (2001) Peccati, G., Taqqu, M.S.: Stable convergence of L 2 generalized stochastic integrals and the principle of conditioning. Electron. J. Probab. 12, 447–480 (2007). Paper No. 15 Peccati, G., Taqqu, M.S.: Central limit theorems for double Poisson integrals. Bernoulli (2008, to appear) Peccati, G., Tudor, C.A.: Gaussian limits for vector-valued multiple stochastic integrals. In: Séminaire de Probabilités XXXVIII, pp. 247–262. Springer, New York (2004) Peccati, G., Yor, M.: Four limit theorems for quadratic functionals of Brownian motion and Brownian bridge. In: Asymptotic Methods in Stochastics. AMS, Fields Institute Communication Series, pp. 75–87 (2004) Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, New York (1999) Schreiber, M.: Fermeture en probabilité de certains sous-espaces d’un espace L 2. Z. Wahrsch. Verw. Gebiete 14, 36–48 (1969) Surgailis, D.: CLTs for polynomials of linear sequences: diagram formulae with applications. In: Long Range Dependence, pp. 111–128. Birkhäuser, Boston (2003) Üstünel, A.S., Zakai, M.: The Construction of Filtrations on Abstract Wiener Space. J. Funct. Anal. 143, 10–32 (1997) van Zanten, H.: A multivariate central limit theorem for continuous local martingales. Stat. Probab. Lett. 50, 229–235 (2000) Wu, L.M.: Un traitement unifié de la représentation des fonctionnelles de Wiener. In: Séminaire de Probabilités XXIV. LNM, vol. 1426, pp. 166–187. Springer, New York (1990) Yosida, K.: Functional Analysis. Springer, Berlin (1980)