Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK
Tóm tắt
To mitigate and slow the spread of COVID-19, many countries have adopted unprecedented physical distancing policies, including the UK. We evaluate whether these measures might be sufficient to control the epidemic by estimating their impact on the reproduction number (R0, the average number of secondary cases generated per case). We asked a representative sample of UK adults about their contact patterns on the previous day. The questionnaire was conducted online via email recruitment and documents the age and location of contacts and a measure of their intimacy (whether physical contact was made or not). In addition, we asked about adherence to different physical distancing measures. The first surveys were sent on Tuesday, 24 March, 1 day after a “lockdown” was implemented across the UK. We compared measured contact patterns during the “lockdown” to patterns of social contact made during a non-epidemic period. By comparing these, we estimated the change in reproduction number as a consequence of the physical distancing measures imposed. We used a meta-analysis of published estimates to inform our estimates of the reproduction number before interventions were put in place. We found a 74% reduction in the average daily number of contacts observed per participant (from 10.8 to 2.8). This would be sufficient to reduce R0 from 2.6 prior to lockdown to 0.62 (95% confidence interval [CI] 0.37–0.89) after the lockdown, based on all types of contact and 0.37 (95% CI = 0.22–0.53) for physical (skin to skin) contacts only. The physical distancing measures adopted by the UK public have substantially reduced contact levels and will likely lead to a substantial impact and a decline in cases in the coming weeks. However, this projected decline in incidence will not occur immediately as there are significant delays between infection, the onset of symptomatic disease, and hospitalisation, as well as further delays to these events being reported. Tracking behavioural change can give a more rapid assessment of the impact of physical distancing measures than routine epidemiological surveillance.
Tài liệu tham khảo
ECDC. Situation update worldwide, as of 13 April 2020: ECDC; 2020. https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases. Accessed 13 Apr 2020.
Jin Y-H, Cai L, Cheng Z-S, Cheng H, Deng T, Fan Y-P, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7:4.
Acaps M. COVID-19: government measures. 2020. https://www.acaps.org/special-report/covid-19-government-measures. Accessed 25 Mar 2020.
Public Health England. Guidance on social distancing for everyone in the UK. gov.uk. 2020. https://www.gov.uk/government/publications/covid-19-guidance-on-social-distancing-and-for-vulnerable-people/guidance-on-social-distancing-for-everyone-in-the-uk-and-protecting-older-people-and-vulnerable-adults. Accessed 28 Mar 2020.
Savanta. Savanta coronavirus daily tracker - 30th March. Savanta coronavirus daily tracker. 2020. https://cdn2.hubspot.net/hubfs/5043860/Covid-19%20assets/Full%20data%20set%20PDFs/Savanta%20Coronavirus%20Daily%20Tracker%20-%2030th%20March.pdf. Accessed 31 Mar 2020.
Atchison C, Bowman L, Eaton J, Imai N, Redd R, Pristera P, et al. Report 10: Public response to UK Government recommendations on COVID-19: population survey, 17-18 March 2020; 2020. https://doi.org/10.25561/77581.
Fancourt D. New study into psychological and social effects of Covid-19: UCL; 2020. https://www.ucl.ac.uk/news/2020/mar/new-study-psychological-and-social-effects-covid-19. Accessed 25 Mar 2020.
YouGov. COVID-19 Public Monitor. YouGov. https://yougov.co.uk/topics/health/explore/issue/Coronavirus. Accessed 31 Mar 2020.
Eames KTD, Tilston NL, Brooks-Pollock E, Edmunds WJ. Measured dynamic social contact patterns explain the spread of H1N1v influenza. PLoS Comput Biol. 2012;8:e1002425.
Hens N, Ayele GM, Goeyvaerts N, Aerts M, Mossong J, Edmunds JW, et al. Estimating the impact of school closure on social mixing behaviour and the transmission of close contact infections in eight European countries. BMC Infect Dis. 2009;9:187.
Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput Biol. 2017;13:e1005697.
Litvinova M, Liu Q-H, Kulikov ES, Ajelli M. Reactive school closure weakens the network of social interactions and reduces the spread of influenza. Proc Natl Acad Sci U S A. 2019;116:13174–81.
Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, et al. Age profile of susceptibility, mixing, and social distancing shape the dynamics of the novel coronavirus disease 2019 outbreak in China. Epidemiology. 2020. https://doi.org/10.1101/2020.03.19.20039107.
Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008;5:e74.
R Core Team. R: a language and environment for statistical computing. 2017. https://www.R-project.org.
Dowle M, Srinivasan A. data.table: extension of ‘data.frame’; 2020.
Wickham H. ggplot2: elegant graphics for data analysis. 2016. https://ggplot2.tidyverse.org.
Office of National Statistics. Estimates of the population for the UK, England and Wales, Scotland and Northern Ireland mid-2018. 2019. https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland. Accessed 25 Mar 2020.
Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol. 2006;164:936–44.
Klepac P, Kucharski AJ, Conlan AJK, Kissler S, Tang M, Fry H, et al. Contacts in context: large-scale setting-specific social mixing matrices from the BBC Pandemic project. Epidemiology. 2020. https://doi.org/10.1101/2020.02.16.20023754.
Diekmann O, Heesterbeek JAP, Roberts MG. The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface. 2010;7:873–85.
Pouillot R, Delignette-Muller ML. Evaluating variability and uncertainty separately in microbial quantitative risk assessment using two R packages. Int J Food Microbiol. 2010;142:330–40.
Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020;25. https://doi.org/10.2807/1560-7917.ES.2020.25.4.2000058.
Imai N, Cori A, Dorigatti I, Baguelin M, Donnelly CA, Riley S, et al. Report 3: transmissibility of 2019-nCoV; 2020. https://doi.org/10.25561/77148.
Read JM, Bridgen JRE, Cummings DAT, Ho A, Jewell CP. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. MedRxiv. 2020; https://www.medrxiv.org/CONTENT/10.1101/2020.01.23.20018549V2.abstract. Accessed 15 Apr 2020.
Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. bioRxiv. 2020. https://doi.org/10.1101/2020.01.23.916395.
Liu T, Hu J, Kang M, Lin L, Zhong H, Xiao J, et al. Transmission dynamics of 2019 novel coronavirus (2019-nCoV). bioRxiv. 2020. https://doi.org/10.2139/ssrn.3526307.
Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (2019-nCoV) outbreak. MedRxiv. 2020. https://doi.org/10.1101/2020.02.09.20021261.
Wu P, Hao X, Lau EHY, Wong JY, Leung KSM, Wu JT, et al. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Euro Surveill. 2020;25. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000044.
Jung S-M, Akhmetzhanov AR, Hayashi K, Linton NM, Yang Y, Yuan B, et al. Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases. J Clin Med Res. 2020;9. https://doi.org/10.3390/jcm9020523.
Zhuang Z, Zhao S, Lin Q, Cao P, Lou Y, Yang L, et al. Preliminary estimating the reproduction number of the coronavirus disease (COVID-19) outbreak in Republic of Korea from 31 January to 1 March 2020. medRxiv. 2020; https://www.medrxiv.org/content/medrxiv/early/2020/03/10/2020.03.02.20030312.full.pdf. Accessed 15 Apr 2020.
Chong KC, Cheng W, Zhao S, Ling F, Mohammad KN. Monitoring disease transmissibility of 2019 novel coronavirus disease in Zhejiang, China. medRxiv. 2020; https://www.medrxiv.org/content/10.1101/2020.03.02.20028704v1.abstract.
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382:1199–207.
Abbott S, Hellewell J, Munday J, Funk S, Group CNW, et al. The transmissibility of novel coronavirus in the early stages of the 2019-20 outbreak in Wuhan: exploring initial point-source exposure sizes and durations using scenario analysis. Wellcome Open Res. 2020;5:17.