Possible changes in spatial distribution of walnut (Juglans regia L.) in Europe under warming climate

Sonia Paź-Dyderska1, Andrzej M. Jagodziński1, Marcin K. Dyderski1
1Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland

Tóm tắt

AbstractJuglans regia L. is a species of great importance for environmental management due to attractive wood and nutritious fruits, but also high invasive potential. Thus, uncertainties connected with its range shift are essential for environmental management. We aimed to predict the future climatic optimum of J. regia in Europe under changing climate, to assess the most important climatic factors that determine its potential distribution, and to compare the results obtained among three different global circulation models (GCMs). We used distribution data from the Global Biodiversity Information Facility and completed it with data from the literature. Using the MaxEnt algorithm, we prepared a species distribution model for the years 2061–2080 using 19 bioclimatic variables. We applied three emission scenarios, expressed by representative concentration pathways (RCPs): RCP2.6, RCP4.5, and RCP8.5 and three GCMs: HadGEM2-ES, IPSL-CM5A-LR, and MPI-SM-LR. Our study predicted northward shift of the species, with simultaneous distribution loss at the southern edge of the current range, driven by increasing climate seasonality. Temperature seasonality and temperature annual range were the predictors of highest importance. General trends are common for the projections presented, but the variability of our projections among the GCMs or RCPs applied (predicted range will contract from 17.4 to 84.6% of the current distribution area) shows that caution should be maintained while managing J. regia populations. Adaptive measures should focus on maintaining genetic resources and assisted migration at the southern range edge, due to range contraction. Simultaneously, at the northern edge of the range, J. regia turns into an invasive species, which may need risk assessments and control of unintended spread.

Từ khóa


Tài liệu tham khảo

Aliskan IK, Terzi I (2001) Allelopathic effects of walnut leaf extracts and juglone on seed germination and seedling growth. J Hortic Sci Biotechnol 76:436–440. https://doi.org/10.1080/14620316.2001.11511390

Beale CM, Lennon JJ (2012) Incorporating uncertainty in predictive species distribution modelling. Philos Trans R Soc B Biol Sci 367:247–258. https://doi.org/10.1098/rstb.2011.0178

Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M et al (2013) Will climate change promote future invasions? Glob Change Biol 19:3740–3748. https://doi.org/10.1111/gcb.12344

Bernyi G, Csurka E, Srvri J, Szodtridt I (1991) Erfahrungen über den forstlichen Walnussanbau in Ungarn. Allgemeine Forstzeitschrift 12:619–621

Boisvert-Marsh L, Périé C, de Blois S (2014) Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5:1–33. https://doi.org/10.1890/ES14-00111.1

Bolte A, Ammer C, Löf M, Madsen P, Nabuurs G-J et al (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482. https://doi.org/10.1080/02827580903418224

Booth TH (2017) Assessing species climatic requirements beyond the realized niche: some lessons mainly from tree species distribution modelling. Climatic Change 145:259–271. https://doi.org/10.1007/s10584-017-2107-9

Booth TH (2018) Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austr Ecol 43:852–860. https://doi.org/10.1111/aec.12628

Booth TH, Nix HA, Busby JR, Hutchinson MF (2014) Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers Distrib 20:1–9. https://doi.org/10.1111/ddi.12144

Brundu G, Richardson DM (2016) Planted forests and invasive alien trees in Europe: a code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota 30:5–47. https://doi.org/10.3897/neobiota.30.7015

Büntgen U, Krusic PJ, Piermattei A, Coomes DA, Esper J et al (2019) Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat Commun 10:2171. https://doi.org/10.1038/s41467-019-10174-4

Camenen E, Porté AJ, Garzón MB (2016) American trees shift their niches when invading Western Europe: evaluating invasion risks in a changing climate. Ecol Evol 6:7263–7275. https://doi.org/10.1002/ece3.2376

Carrión JS, Sanchez-Gomez P (1992) Palynological data in support of the survival of walnut (Juglans regia L.) in the Western Mediterranean area during last glacial times. J Biogeogr 19:623–630. https://doi.org/10.2307/2845705

Carvalho M, Ferreira PJ, Mendes VS, Silva R, Pereira JA et al (2010) Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem Toxicol 48:441–447. https://doi.org/10.1016/j.fct.2009.10.043

Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM et al (2000) Consequences of changing biodiversity. Nature 405:234–242. https://doi.org/10.1038/35012241

Cornwell WK, Pearse WD, Dalrymple RL, Zanne AE (2019) What we (don’t) know about global plant diversity. Ecography 42:1819–1831. https://doi.org/10.1111/ecog.04481

Czortek P, Delimat A, Dyderski MK, Zięba A, Jagodziński AM et al (2018) Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr - a rare arctic-alpine species in the Tatra Mts. Sci Total Environ 618:1628–1637. https://doi.org/10.1016/j.scitotenv.2017.10.001

Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165. https://doi.org/10.1038/nature04514

De Boeck HJ, Liberloo M, Gielen B, Nijs I, Ceulemans R (2008) The observer effect in plant science. New Phytol 177:579–583. https://doi.org/10.1111/j.1469-8137.2007.02329.x

de Rigo D, Enescu CM, Houston Durrant T, Tinner W, Caudullo G (2016) Juglans regia in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (Eds.) European atlas of forest tree species. Publ. Off. EU, Luxembourg, p e01977c+

Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655. https://doi.org/10.1016/S0169-5347(01)02283-2

Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. https://doi.org/10.1007/s00382-012-1636-1

Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018) How much does climate change threaten European forest tree species distributions? Glob Change Biol 24:1150–1163. https://doi.org/10.1111/gcb.13925

Dylewski Ł, Mikula P, Tryjanowski P, Morelli F, Yosef R (2017) Social media and scientific research are complementary—YouTube and shrikes as a case study. Sci Nat 104:48. https://doi.org/10.1007/s00114-017-1470-8

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Ercisli S, Sayinci B, Kara M, Yildiz C, Ozturk I (2012) Determination of size and shape features of walnut (Juglans regia L.) cultivars using image processing. Sci Hortic 133:47–55. https://doi.org/10.1016/j.scienta.2011.10.014

Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. https://doi.org/10.1017/S0376892997000088

GBIF (2019) GBIF Occurrence Download for Juglans regia L.  Retrieved from Global Biodiversity Information Facility. https://doi.org/10.15468/dl.4ksrxt 

Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597. https://doi.org/10.1002/jame.20038

Goberville E, Beaugrand G, Hautekèete N-C, Piquot Y, Luczak C (2015) Uncertainties in the projection of species distributions related to general circulation models. Ecol Evol 5:1100–1116. https://doi.org/10.1002/ece3.1411

Gray LK, Gylander T, Mbogga MS, Chen P-Y, Hamann A (2011) Assisted migration to address climate change: recommendations for aspen reforestation in western Canada. Ecol Appl Publ Ecol Soc Am 21:1591–1603. https://doi.org/10.2307/23023103

Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207. https://doi.org/10.1038/nclimate1687

Harris RMB, Grose MR, Lee G, Bindoff NL, Porfirio LL et al (2014) Climate projections for ecologists. Wiley Interdiscip Rev Clim Change 5:621–637. https://doi.org/10.1002/wcc.291

Hertin J, Berkhout F, Gann D, Barlow J (2003) Climate change and the UK house building sector: perceptions, impacts and adaptive capacity. Build Res Inf 31:278–290. https://doi.org/10.1080/0961321032000097683

Hickler T, Vohland K, Feehan J, Miller PA, Smith B et al (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeogr 21:50–63. https://doi.org/10.1111/j.1466-8238.2010.00613.x

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

Hijmans RJ, Phillips S, Leathwick J, Elith JL (2017) dismo: Species Distribution Modeling. URL https://CRAN.R-project.org/package=dismo. Accessed 15 Jan 2021

Hobbie SE, Chapin FS (1998) The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79:1526–1544. https://doi.org/10.1890/0012-9658(1998)079[1526:TROTPB]2.0.CO;2

Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427. https://doi.org/10.1101/SQB.1957.022.01.039

Huxel GR (1999) Rapid displacement of native species by invasive species: effects of hybridization. Biol Conserv 89:143–152. https://doi.org/10.1016/S0006-3207(98)00153-0

Jagiełło ZA, Dyderski MK, Dylewski Ł (2019) What can we learn about the behaviour of red and grey squirrels from YouTube? Ecol Inform 51:52–60. https://doi.org/10.1016/j.ecoinf.2019.02.006

Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570. https://doi.org/10.5194/gmd-4-543-2011

Kariyawasam CS, Kumar L, Ratnayake SS (2019) Invasive plant species establishment and range dynamics in Sri Lanka under climate change. Entropy 21:571. https://doi.org/10.3390/e21060571

Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Pyšek P, Prach K, Rejmánek M, Wade M (eds) Plant invasions: general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 15–38

Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, San Diego

Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G et al (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392. https://doi.org/10.1111/j.1461-0248.2012.01746.x

Křivánek M, Pyšek P (2006) Predicting invasions by woody species in a temperate zone: a test of three risk assessment schemes in the Czech Republic (Central Europe). Divers Distrib 12:319–327. https://doi.org/10.1111/j.1366-9516.2006.00249.x

Kuparinen A, Savolainen O, Schurr FM (2010) Increased mortality can promote evolutionary adaptation of forest trees to climate change. For Ecol Manag 259:1003–1008. https://doi.org/10.1016/j.foreco.2009.12.006

Lenda M, Knops JH, Skórka P, Moroń D, Woyciechowski M (2018) Cascading effects of changes in land use on the invasion of the walnut Juglans regia in forest ecosystems. J Ecol 106:671–686. https://doi.org/10.1111/1365-2745.12827

Liberloo M, Calfapietra C, Lukac M, Godbold D, Luo Z-B et al (2006) Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world. Glob Change Biol 12:1094–1106. https://doi.org/10.1111/j.1365-2486.2006.01118.x

Lin Y-P, Deng D, Lin W-C, Lemmens R, Crossman ND et al (2015) Uncertainty analysis of crowd-sourced and professionally collected field data used in species distribution models of Taiwanese moths. Biol Conserv 181:102–110. https://doi.org/10.1016/j.biocon.2014.11.012

Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S et al (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manage 146:69–83. https://doi.org/10.1016/j.jenvman.2014.07.030

Loacker K, Kofler W, Pagitz K, Oberhuber W (2007) Spread of walnut (Juglans regia L.) in an Alpine valley is correlated with climate warming. Flora - Morphol Distrib Funct Ecol Plants 202:70–78. https://doi.org/10.1016/j.flora.2006.03.003

Luo Y, McIntire EJB, Boisvenue C, Nikiema PP, Chen HYH (2019) Climatic change only stimulated growth for trees under weak competition in central boreal forests. J Ecol 108:36–41. https://doi.org/10.1111/1365-2745.13228

Martínez ML, Labuckas DO, Lamarque AL, Maestri DM (2010) Walnut (Juglans regia L.): genetic resources, chemistry, by-products. J Sci Food Agric 90:1959–1967. https://doi.org/10.1002/jsfa.4059

Matsui T, Takahashi K, Tanaka N, Hijioka Y, Horikawa M et al (2009) Evaluation of habitat sustainability and vulnerability for beech (Fagus crenata) forests under 110 hypothetical climatic change scenarios in Japan. Appl Veg Sci 12:328–339. https://doi.org/10.1111/j.1654-109X.2009.01027.x

McGranahan G, Leslie C (2009) Breeding walnuts (Juglans regia). In: Gradziel TM (ed) Breeding plantation tree crops: temperate species. Springer New York, New York, pp 249–273

McKenney DW, Pedlar JH, Lawrence K, Campbell K, Hutchinson MF (2007) Potential impacts of climate change on the distribution of North American trees. BioScience 57:939–948. https://doi.org/10.1641/B571106

McLachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302. https://doi.org/10.1111/j.1523-1739.2007.00676.x

McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869. https://doi.org/10.1016/S0140-6736(06)68079-3

Mellert KH, Deffner V, Küchenhoff H, Kölling C (2015) Modeling sensitivity to climate change and estimating the uncertainty of its impact: a probabilistic concept for risk assessment in forestry. Ecol Model 316:211–216. https://doi.org/10.1016/j.ecolmodel.2015.08.014

Metzger MJ, Bunce RGH, Leemans R, Viner D (2008) Projected environmental shifts under climate change: European trends and regional impacts. Environ Conserv 35:64–75. https://doi.org/10.1017/S0376892908004529

Miller RB (1976) Wood anatomy and identification of species of Juglans. Bot Gaz 137:368–377. https://doi.org/10.1086/336886

O’Donnell MS, Ignizio DA (2012) Bioclimatic predictors for supporting ecological applications in the conterminous United States. Geol Surv Data Ser 691:1–10

Oliver TH, Smithers RJ, Beale CM, Watts K (2016) Are existing biodiversity conservation strategies appropriate in a changing climate? Biol Conserv 193:17–26. https://doi.org/10.1016/j.biocon.2015.10.024

Özcan MM (2009) Some nutritional characteristics of fruit and oil of walnut (Juglans regia L.) growing in Turkey. Iran J Chem Chem Eng IJCCE 28:57–62

Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x

Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711. https://doi.org/10.1111/j.1365-2699.2006.01460.x

Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101:9971–9975. https://doi.org/10.1073/pnas.0403720101

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of MaxEnt. Ecography 40:887–893. https://doi.org/10.1111/ecog.03049

Pollegioni P, Woeste KE, Chiocchini F, Olimpieri I, Tortolano V et al (2014) Landscape genetics of Persian walnut (Juglans regia L.) across its Asian range. Tree Genet Genomes 10:1027–1043. https://doi.org/10.1007/s11295-014-0740-2

R Core Team (2019) R: A language and environment for statistical computing. Austria, Vienna

Rajora OP, Mosseler A (2001) Challenges and opportunities for conservation of forest genetic resources. Euphytica 118:197–212. https://doi.org/10.1023/A:1004150525384

Ranjitkar S, Sujakhu NM, Lu Y, Wang Q, Wang M et al (2016) Climate modelling for agroforestry species selection in Yunnan Province, China. Environ Model Softw 75:263–272. https://doi.org/10.1016/j.envsoft.2015.10.027

Remya K, Ramachandran A, Jayakumar S (2015) Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecol Eng 82:184–188. https://doi.org/10.1016/j.ecoleng.2015.04.053

Ren M-X, Zhang Q-G (2009) The relative generality of plant invasion mechanisms and predicting future invasive plants. Weed Res 49:449–460. https://doi.org/10.1111/j.1365-3180.2009.00723.x

Riahi K, Rao S, Krey V, Cho C, Chirkov V et al (2011) RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. https://doi.org/10.1007/s10584-011-0149-y

Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD et al (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. https://doi.org/10.1046/j.1472-4642.2000.00083.x

Rocchini D, Garzón-López CX (2017) Cartograms tool to represent spatial uncertainty in species distribution. Res Ideas Outcomes 3:e12029. https://doi.org/10.3897/rio.3.e12029

Rouget M, Richardson DM, Nel JL, Van Wilgen BW (2002) Commercially important trees as invasive aliens – towards spatially explicit risk assessment at a national scale. Biol Invasions 4:397–412. https://doi.org/10.1023/A:1023611713339

Scheffers BR, Meester LD, Bridge TCL, Hoffmann AA, Pandolfi JM et al (2016) The broad footprint of climate change from genes to biomes to people. Science 354:aaf7671. https://doi.org/10.1126/science.aaf7671

Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci U S A 104:19703–19708. https://doi.org/10.1073/pnas.0701976104

Schueler S, Falk W, Koskela J, Lefèvre F, Bozzano M et al (2014) Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change. Glob Change Biol 20:1498–1511. https://doi.org/10.1111/gcb.12476

Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change 4:806–810. https://doi.org/10.1038/nclimate2318

Spittlehouse D, Stewart RB (2003) Adaptation to climate change in forest management. BC J Ecosyst Manag 4:1–11

Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci 99:15497–15500. https://doi.org/10.1073/pnas.242437499

Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615

Sykes MT, Prentice IC (1996) Climate change, tree species distributions and forest dynamics: a case study in the mixed conifer/northern hardwoods zone of northern Europe. Clim Change 34:161–177. https://doi.org/10.1007/BF00224628

Taylor KT, Maxwell BD, McWethy DB, Pauchard A, Nuñez MA et al (2017) Pinus contorta invasions increase wildfire fuel loads and may create a positive feedback with fire. Ecology 98:678–687. https://doi.org/10.1002/ecy.1673

Thuiller W, Richardson DM, Midgley GF (2007) Will climate change promote alien plant invasions? In: Nentwig W (ed) Biological invasions. Springer, Berlin Heidelberg, pp 197–211

Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B et al (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534. https://doi.org/10.1038/nature09705

Thuiller W, Guéguen M, Renaud J, Karger DN, Zimmermann NE (2019) Uncertainty in ensembles of global biodiversity scenarios. Nat Commun 10:1446. https://doi.org/10.1038/s41467-019-09519-w

Thurm EA, Hernandez L, Baltensweiler A, Ayan S, Rasztovits E et al (2018) Alternative tree species under climate warming in managed European forests. For Ecol Manag 430:485–497. https://doi.org/10.1016/j.foreco.2018.08.028

Tulloch AIT, Mustin K, Possingham HP, Szabo JK, Wilson KA (2013) To boldly go where no volunteer has gone before: predicting volunteer activity to prioritize surveys at the landscape scale. Divers Distrib 19:465–480. https://doi.org/10.1111/j.1472-4642.2012.00947.x

van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography 39:542–552. https://doi.org/10.1111/ecog.01509

van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. https://doi.org/10.1007/s10584-011-0148-z

Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499. https://doi.org/10.1126/science.277.5325.494

Walas Ł, Sobierajska K, Ok T, Dönmez AA, Kanoğlu SS et al (2019) Past, present, and future geographic range of an oro-Mediterranean Tertiary relict: the Juniperus drupacea case study. Reg Environ Change 19:1507–1520. https://doi.org/10.1007/s10113-019-01489-5

Walther GR (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B Biol Sci 365:2019–2024. https://doi.org/10.1098/rstb.2010.0021

Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P et al (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693. https://doi.org/10.1016/j.tree.2009.06.008

Wangen SR, Webster CR (2006) Potential for multiple lag phases during biotic invasions: reconstructing an invasion of the exotic tree Acer platanoides. J Appl Ecol 43:258–268. https://doi.org/10.1111/j.1365-2664.2006.01138.x

Warton DI, Renner IW, Ramp D (2013) Model-based control of observer bias for the analysis of presence-only data in ecology. PLOS ONE 8:e79168. https://doi.org/10.1371/journal.pone.0079168

Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci 106:19729–19736. https://doi.org/10.1073/pnas.0901639106

Winter M-B, Wolff B, Gottschling H, Cherubini P (2009) The impact of climate on radial growth and nut production of Persian walnut (Juglans regia L.) in Southern Kyrgyzstan. Eur. J For Res 128:531. https://doi.org/10.1007/s10342-009-0295-1