Clinical outcomes of COVID-19 in Wuhan, China: a large cohort study

Annals of Intensive Care - Tập 10 - Trang 1-21 - 2020
Jiao Liu1, Sheng Zhang1, Zhixiong Wu2, You Shang3, Xuan Dong4, Guang Li5, Lidi Zhang1, Yizhu Chen1, Xiaofei Ye6, Hangxiang Du1, Yongan Liu1, Tao Wang1, SiSi Huang1, Limin Chen1, Zhenliang Wen1, Jieming Qu7, Dechang Chen1,7
1Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2Department of Surgical Intensive Care Unit, Huadong Hospital Affiliated to Fudan University, Shanghai, China
3Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
4Tuberculosis and Respiratory Department, Wuhan Jinyin-tan Hospital, Wuhan, China
5Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
6Department of Health Statistics, Second Military Medical University, Shanghai, China
7Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Tóm tắt

Since December 2019, an outbreak of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) initially emerged in Wuhan, China, and has spread worldwide now. Clinical features of patients with COVID-19 have been described. However, risk factors leading to in-hospital deterioration and poor prognosis in COVID-19 patients with severe disease have not been well identified. In this retrospective, single-center cohort study, 1190 adult inpatients (≥ 18 years old) with laboratory-confirmed COVID-19 and determined outcomes (discharged or died) were included from Wuhan Infectious Disease Hospital from December 29, 2019 to February 28, 2020. The final follow-up date was March 2, 2020. Clinical data including characteristics, laboratory and imaging information as well as treatments were extracted from electronic medical records and compared. A multivariable logistic regression model was used to explore the potential predictors associated with in-hospital deterioration and death. 1190 patients with confirmed COVID-19 were included. Their median age was 57 years (interquartile range 47–67 years). Two hundred and sixty-one patients (22%) developed a severe illness after admission. Multivariable logistic regression demonstrated that higher SOFA score (OR 1.32, 95% CI 1.22–1.43, per score increase, p < 0.001 for deterioration and OR 1.30, 95% CI 1.11–1.53, per score increase, p = 0.001 for death), lymphocytopenia (OR 1.81, 95% CI 1.13–2.89 p = 0.013 for deterioration; OR 4.44, 95% CI 1.26–15.87, p = 0.021 for death) on admission were independent risk factors for in-hospital deterioration from not severe to severe disease and for death in severe patients. On admission D-dimer greater than 1 μg/L (OR 3.28, 95% CI 1.19–9.04, p = 0.021), leukocytopenia (OR 5.10, 95% CI 1.25–20.78), thrombocytopenia (OR 8.37, 95% CI 2.04–34.44) and history of diabetes (OR 11.16, 95% CI 1.87–66.57, p = 0.008) were also associated with higher risks of in-hospital death in severe COVID-19 patients. Shorter time interval from illness onset to non-invasive mechanical ventilation in the survivors with severe disease was observed compared with non-survivors (10.5 days, IQR 9.25–11.0 vs. 16.0 days, IQR 11.0–19.0 days, p = 0.030). Treatment with glucocorticoids increased the risk of progression from not severe to severe disease (OR 3.79, 95% CI 2.39–6.01, p < 0.001). Administration of antiviral drugs especially oseltamivir or ganciclovir is associated with a decreased risk of death in severe patients (OR 0.17, 95% CI 0.05–0.64, p < 0.001). High SOFA score and lymphocytopenia on admission could predict that not severe patients would develop severe disease in-hospital. On admission elevated D-dimer, leukocytopenia, thrombocytopenia and diabetes were independent risk factors of in-hospital death in severe patients with COVID-19. Administration of oseltamivir or ganciclovir might be beneficial for reducing mortality in severe patients.

Tài liệu tham khảo

Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol. 2020;92:401–2. Hui DS, Azhar I, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;2020(91):264–6. Wuhan Municipal Health Commission. Report of novel coronavirus-infected pneumonia in China. 2020. WHO. Novel coronavirus (2019-nCoV): situation report-15. 2020. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med. 2020;382:727–33. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–20. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–81. WHO. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance. 2020. https://apps.who.int/iris/handle/10665/330893. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200:e45–67. Zareifopoulos N, Lagadinou M, Karela A, et al. Intubation and mechanical ventilation of patients with COVID-19: what should we tell them? Monaldi Arch Chest Dis. 2020;90:1. Alraddadi BM, Qushmaq I, Al-Hameed FM, et al. Noninvasive ventilation in critically ill patients with the Middle East respiratory syndrome. Influenza Other Respir Viruses. 2019;13:382–90. Ferreira FL, Bota DP, Bross A, et al. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA. 2001;286:1754–8. Zhou F, Wang Y, Liu Y, et al. Disease severity and clinical outcomes of community-acquired pneumonia caused by non-influenza respiratory viruses in adults: a multicentre prospective registry study from the CAP-China Network. Eur Respir J. 2019;54:1. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 (Epub ahead of print). Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3. Zhao Y, Zhao Z, Wang Y, et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. BioRxiv. 2020. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020, undefined. Aggarwal G, Cheruiyot I, Aggarwal S, et al. Association of cardiovascular disease with coronavirus disease 2019 (COVID-19) severity: a meta-analysis. Curr Probl Cardiol. 2020; undefined: 100617. Arabi YM, Arifi AA, Balkhy HH, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med. 2014;160:389–97. Booth CM, Matuka LM, Tomlinson GA, et al. Clinical features and short-term outcomes of 144 patients with SARS in the Greater Toronto area. JAMA. 2003;289:2801–9. Niederman MS, Mandell LA, Anzueto A, et al. American Thoracic Society guidelines for the management of adults with community-acquired pneumonia. Am J Respir Crit Care Med. 2001;163:1730–54. Fine MJ, Smith MA, Carson CA, et al. Prognosis and outcomes of patients with community-acquired pneumonia: a meta-analysis. JAMA. 1996;275:134–41. Matsuyama R, Nishiura H, Kutsuna S, et al. Clinical determinants of the severity of Middle East respiratory syndrome (MERS): a systematic review and meta-analysis. BMC Public Health. 2016;16:1203. Grossmann V, Schmitt VH, Zeller T, et al. Profile of the immune and inflammatory response in individuals with prediabetes and type 2 diabetes. Diabetes Care. 2015;38:1356–64. Chan JWM, Ng CK, Chan YH, et al. Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax. 2003;58:686–9. Ko JH, Park GE, Lee JY, et al. Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients. J Infect. 2016;73:468–75. Ng DL, Al Hosani F, Keating MK, et al. Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol. 2016;186:652–8. Min CK, Cheon S, Ha NY, et al. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci Rep. 2016;6:25359. Kim ES, Choe PG, Park WB, et al. Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J Korean Med Sci. 2016;31:1717–25. Adam SS, Key NS, Greenberg CS. D-dimer antigen: current concepts and future prospects. Blood. 2009;113:2878–87. Kwiecinski JM, Horswill AR. Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms. Curr Opin Microbiol. 2020;53:51–60. Niessen F, Schaffner F, Furlan-Freguia C, et al. Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature. 2008;452:654–8. Querol-Ribelles JM, Tenias JM, Grau E, et al. Plasma d-dimer levels correlate with outcomes in patients with community-acquired pneumonia. Chest. 2004;126:1087–92. Shilon Y, Shitrit B, Rudensky B, et al. A rapid quantitative D-dimer assay at admission correlates with the severity of community-acquired pneumonia. Blood Coagul Fibrinolysis. 2003;14:745–8. Mendoza-Torres E, Oyarzún A, Mondaca-Ruff D, et al. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Ther Adv Cardiovasc Dis. 2015;9:217–37.