Magnetocaloric effect of Sr-substituted BaFeO3 in the liquid nitrogen and natural gas temperature regions

AIP Advances - Tập 7 Số 4 - 2017
Kenji Yoshii1, Naoaki Hayashi2, Masaichiro Mizumaki3,4, Mikio Takano2
1Japan Atomic Energy Agency 1 , Sayo, Hyogo 679-5148, Japan
2Kyoto University 2 Institute for Integrated Cell-Material Sciences, , Kyoto 606-8501, Japan
3Japan Science and Technology Agency 4 CREST, , 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
4Japan Synchrotron Radiation Research Institute 3 , Sayo, Hyogo 679-5198, Japan

Tóm tắt

We have investigated the magnetocaloric effect (MCE) of Ba1-xSrxFe4+O3 (x≤0.2), a series of cubic perovskites showing a field-induced transition from helical antiferromagnetism to ferromagnetism. The maximum magnetic entropy change (-ΔSmax) at 50 kOe varies from ∼5.8 J kg-1K-1 (x=0) to ∼4.9 J kg-1K-1 (x=0.2), while the refrigerant capacity remains almost the same at ∼165 J kg-1. Interestingly, the temperature of -ΔSmax decreases from ∼116 K to ∼77 K with increasing x, providing this series of rare-earth-free oxides with potential as a magnetic refrigerant for the liquefaction of nitrogen and natural gas.

Từ khóa


Tài liệu tham khảo

2005, Rep. Prog. Phys., 68, 1479, 10.1088/0034-4885/68/6/r04

2014, Nat. Mater., 13, 439, 10.1038/nmat3951

1997, Phys. Rev. Lett., 78, 4494, 10.1103/physrevlett.78.4494

2001, Appl. Phys. Lett., 79, 3302, 10.1063/1.1419048

2001, Appl. Phys. Lett., 78, 3675, 10.1063/1.1375836

2014, Appl. Phys. Lett., 104, 122410, 10.1063/1.4869957

2013, Appl. Phys. Lett., 103, 162413, 10.1063/1.4826440

2009, J. Appl. Phys., 106, 023909, 10.1063/1.3174396

2013, Appl. Phys. Lett., 102, 062414, 10.1063/1.4792239

2013, J. Appl. Phys., 114, 073901, 10.1063/1.4818316

2011, Angew. Chem. Int. Ed., 43, 12547

1992, Phys. Rev. B, 45, 1561, 10.1103/physrevb.45.1561

1992, Phys. Rev. B, 46, 4511, 10.1103/physrevb.46.4511

2015, Phys. Stat. Sol. (c), 12, 818, 10.1002/pssc.201400252

2009, Appl. Therm. Eng., 29, 1478, 10.1016/j.applthermaleng.2008.06.028

2006, Appl.Phys. Lett., 89, 062504, 10.1063/1.2227631

2011, Phys. Rev. B, 84, 054427, 10.1103/physrevb.84.054427

2013, J. Phys. Soc. Jpn., 82, 113702, 10.7566/jpsj.82.113702

1999, J. Magn. Magn. Mater., 200, 44, 10.1016/s0304-8853(99)00397-2

2009, J. Phys.: Cond. Matter, 21, 436010

2014, J. Appl. Phys., 115, 034903, 10.1063/1.4861630

2009, J. Magn. Magn. Mater., 321, 3559, 10.1016/j.jmmm.2009.06.086

2013, Appl. Phys. Lett., 103, 112404, 10.1063/1.4821197

2015, J. Phys.:D, 48, 025005

1989, J. Appl. Phys., 66, 983, 10.1063/1.343481

1964, Phys. Lett., 12, 16, 10.1016/0031-9163(64)91158-8

2000, Nature, 429, 853, 10.1038/nature02657

1999, J. Appl. Phys., 86, 565, 10.1063/1.370767

2009, Appl. Phys. Lett., 94, 042506, 10.1063/1.3075851

2001, Phys. Rev. B, 63, 184406, 10.1103/physrevb.63.184406