Quadratic Lagrange spectrum: I
Tóm tắt
In this paper we prove the existence of Hall’s ray for the quadratic Lagrange spectrums of all real quadratic numbers. For a large class of real quadratic numbers, we compute the Hurwitz constants of their quadratic Lagrange spectrums.
Tài liệu tham khảo
Bugeaud, Y.: On the quadratic Lagrange spectrum. Math. Z. 276(3–4), 985–999 (2014)
Cusick, T.W.: The connection between the Lagrange and Markov spectra. Duke Math. J. 42, 507–517 (1975)
Cusick, T.W., Flahive, M.E.: The Markoff and Lagrange spectra, Mathematicas Surveys and Monographs, vol. 30 (1989)
Hall, M.: On the sum and product of continued fractions. Ann. Math. 48(4), 966–993 (1947)
Hardy, G., Wright, E.: An Introduction to the Theory of Numbers. Oxford University Press, London (1979)
Markoff, A.: Sur les formes quadratiques binaires indéfinies. Math. Ann. 15, 381–409 (1879)
Markoff, A.: Sur les formes quadratiques binaires indéfinies. Math. Ann. 17, 379–399 (1880)
Pejković, T.: Quadratic Lagrange spectrum. Math. Z. 283(3–4), 861–869 (2016)
Parkkonen, J., Paulin, F.: Spiraling spectra of geodesic lines in negatively curved manifolds. Math. Z. 268(1–2), 101–142 (2011)
Parkkonen, J., Paulin, F.: Erratum to: Spiraling spectra of geodesic lines in negatively curved manifolds. Math. Z. 276(3–4), 1215–1216 (2014)