Bayesian identification of soil stratigraphy based on soil behaviour type index

Canadian Geotechnical Journal - Tập 56 Số 4 - Trang 570-586 - 2019
Zi-Jun Cao1, Shuo Zheng1, Dianqing Li1, Kok‐Kwang Phoon2
1State Key Laboratory of Water Resources and Hydropower Engineering Science, Institute of Engineering Risk and Disaster Prevention, Wuhan University 8 Donghu South Road, Wuhan 430072, P.R. China.
2Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A, #07-03, 1 Engineering Drive 2, Singapore 117576.

Tóm tắt

The cone penetration test (CPT) has been widely used to determine the soil stratigraphy (including the number N and thicknesses HNof soil layers) during geotechnical site investigation because it is rapid, repeatable, and economical. For this purpose, several deterministic and probabilistic approaches have been developed in the literature, but these approaches generally only give the “best” estimates (e.g., the most probable values) of N and HNbased on CPT data according to prescribed soil stratification criteria, providing no information on the identification uncertainty (degrees-of-belief) in these “best” estimates. This paper develops a Bayesian framework for probabilistic soil stratification based on the profile of soil behaviour type index Iccalculated from CPT data. The proposed Bayesian framework not only provides the most probable values of N and HN, but also quantifies their associated identification uncertainty based on the Icprofile and prior knowledge. Equations are derived for the proposed approach, and they are illustrated and validated using real and simulated Icprofiles. Results show that the proposed approach properly identifies the most probable soil stratigraphy based on the Icprofile and prior knowledge, and rationally quantifies the uncertainty in identified soil stratigraphy with consideration of inherent spatial variability of Ic.

Từ khóa


Tài liệu tham khảo

10.1016/j.strusafe.2013.08.001

Ang, A.H.S., and Tang, W.H. 2007. Probability concepts in engineering: emphasis on applications to civil and environmental engineering. John Wiley and Sons, New York.

10.1520/D2487-06

10.1520/D2487-11

10.1016/S0266-8920(01)00019-4

10.1061/(ASCE)0733-9399(2003)129:8(901)

Au, S.K., and Wang, Y. 2014. Engineering risk assessment with subset simulation. John Wiley and Sons, Singapore.

10.1016/j.strusafe.2010.03.004

10.1061/(ASCE)0733-9399(2002)128:4(380)

Bishop, C.M. 2006. Pattern recognition and machine learning. Springer Science & Business Media, LLC, USA.

10.1061/9780784404843.ch02

10.1061/(ASCE)GT.1943-5606.0000765

10.1016/j.strusafe.2013.06.003

10.1016/j.enggeo.2015.08.018

10.1061/(ASCE)1090-0241(2009)135:1(84)

10.1061/(ASCE)0733-9399(2007)133:7(816)

10.1016/j.enggeo.2015.10.015

10.1061/(ASCE)GT.1943-5606.0000849

10.1016/j.strusafe.2015.03.001

10.1139/cgj-2015-0027

10.1139/cgj-2015-0094

10.1139/t2012-062

10.1080/17499518.2015.1072637

10.1016/j.cma.2017.01.006

Douglas, B.J., and Olsen, R.S. 1981. Soil classification using electric cone penetrometer.InProceedings of the Symposium on Cone Penetration Testing and Experience, St. Louis, Mo., 26–30 October 1981.Edited byG.M. Norris and R.D. Holtz. Geotechnical Engineering Division, American Society of Civil Engineers, New York, pp. 209–227.

10.1139/t97-056

10.1061/(ASCE)1090-0241(1999)125:6(470)

10.1061/(ASCE)1090-0241(1999)125:6(486)

10.1016/j.compgeo.2017.04.010

10.1061/(ASCE)1090-0241(2002)128:12(986)

10.1680/geot.13.P.007

10.1007/s10346-016-0726-2

10.1139/cgj-2017-0429

10.1520/GTJ10286J

10.1680/geot.2008.58.7.591

10.1680/geot.09.P.097

10.1061/(ASCE)0887-3801(2006)20:4(281)

10.1016/j.strusafe.2013.08.005

10.1016/j.compgeo.2015.12.010

10.1007/s10346-015-0569-2

10.1016/j.strusafe.2010.03.001

10.1007/s00158-016-1414-5

10.1680/jgeot.14.P.242

10.1080/17499510701345175

Lunne, T., Robertson, P.K., and Powell, J.J.M. 1997. Cone penetration testing in geotechnical practice. Blackie Academic, EFSpon/Routledge, New York.

Mayne, P.W., Christopher, B.R., and DeJong, J. 2002. Subsurface investigations—Geotechnical site characterization. Rep. No. FHWA NHI-01-031. Federal Highway Administration, U.S. Department of Transportation, Washington, D.C.

10.1061/(ASCE)1090-0241(2003)129:7(649)

10.1139/t03-091

10.1016/j.compstruc.2012.12.023

10.1016/j.enggeo.2018.03.007

10.1139/t90-014

10.1139/T09-065

10.1139/cgj-2016-0044

10.1139/t83-078

10.1139/t83-079

10.1139/t98-017

10.1016/j.probengmech.2010.08.007

Sivia, D.S., and Skilling, J. 2006. Data analysis: a Bayesian tutorial. Oxford University Press, New York.

10.1016/j.probengmech.2010.08.003

10.1061/(ASCE)EM.1943-7889.0000839

10.1016/j.jcp.2016.03.018

Tumay, M.T., Abu-Farsakh, M.Y., and Zhang, Z. 2008. From theory to implementation of a CPT-based probabilistic and fuzzy soil classification.InFrom Research to Practice in Geotechnical Engineering Congress, ASCE. 10.1061/40962(325)5.

Vanmarcke, E. 2010. Random fields: analysis and synthesis. 2nd (revised and expanded) ed. World Scientific Publishing Company.

Wang Y., 2013, Soils and Foundations, 53, 820, 10.1016/j.sandf.2013.10.002

10.1016/j.compgeo.2010.08.010

10.1016/j.enggeo.2010.05.013

10.1139/cgj-2013-0004

10.1680/geot.13.T.018

10.1680/jgeot.15.P.219

10.1016/j.compgeo.2016.05.024

10.1061/(ASCE)GT.1943-5606.0001875

10.1061/(ASCE)GT.1943-5606.0000157

10.1016/j.compgeo.2017.11.012

10.1007/s00366-018-0610-x

10.1016/j.strusafe.2010.03.011

Yuen, K.V. 2010b. Bayesian methods for structural dynamics and civil engineering. John Wiley and Sons, Singapore.

10.1061/(ASCE)1090-0241(1999)125:3(179)