A novel small molecule target in human airway smooth muscle for potential treatment of obstructive lung diseases: a staged high-throughput biophysical screening
Tóm tắt
A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma. Using a high-throughput fluorescence polarization (FP) assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM). Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds. Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell in vitro and attenuated active force development of intact tissue ex vivo. This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.
Tài liệu tham khảo
Barnes PJ: New drugs for asthma. Nature Reviews Drug Discovery. 2004, 3: 831-844. 10.1038/nrd1524.
Green SA, Turki J, Bejarano P, Hall IP, Liggett SB: Influence of Beta(2)-Adrenergic Receptor Genotypes on Signal-Transduction in Human Airway Smooth-Muscle Cells. American Journal of Respiratory Cell and Molecular Biology. 1995, 13: 25-33.
Israel E, Chinchilli VM, Ford JG, Boushey HA, Cherniack R, Craig TJ, Deykin A, Fagan JK, Fahy JV, Fish J, Kraft M, Kunselman SJ, Lazarus SC, Lemanske RF, Liggett SB, Martin RJ, Mitra N, Peters SP, Silverman E, Sorkness CA, Szefler SJ, Wechsler ME, Weiss ST, Drazen JM: Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet. 2004, 364: 1505-1512. 10.1016/S0140-6736(04)17273-5.
Taylor DR, Drazen JM, Herbison GP, Yandava CN, Hancox RJ, Town GI: Asthma exacerbations during long term beta agonist use: influence of beta(2) adrenoceptor polymorphism. Thorax. 2000, 55: 762-767. 10.1136/thorax.55.9.762.
Sears MR, Taylor DR, Print CG, Lake DC, Li QQ, Flannery EM, Yates DM, Lucas MK, Herbison GP: Regular Inhaled Beta-Agonist Treatment in Bronchial-Asthma. Lancet. 1990, 336: 1391-1396. 10.1016/0140-6736(90)93098-A.
Taylor DR, Sears MR, Herbison GP, Flannery EM, Print CG, Lake DC, Yates DM, Lucas MK, Li Q: Regular Inhaled Beta-Agonist in Asthma - Effects on Exacerbations and Lung-Function. Thorax. 1993, 48: 134-138. 10.1136/thx.48.2.134.
Deshpande DA, Penn RB: Targeting G protein-coupled receptor signaling in asthma. Cellular Signalling. 2006, 18: 2105-2120. 10.1016/j.cellsig.2006.04.008.
Murray KJ: Cyclic-Amp and Mechanisms of Vasodilation. Pharmacology & Therapeutics. 1990, 47: 329-345.
Popescu LM, Panoiu C, Hinescu M, Nutu O: The Mechanism of Cgmp-Induced Relaxation in Vascular Smooth-Muscle. European Journal of Pharmacology. 1985, 107: 393-394. 10.1016/0014-2999(85)90269-9.
Beall A, Bagwell D, Woodrum D, Stoming TA, Kato K, Suzuki A, Rasmussen H, Brophy CM: The small heat shock-related protein, HSP20, is phosphorylated on serine 16 during cyclic nucleotide-dependent relaxation. Journal of Biological Chemistry. 1999, 274: 11344-11351. 10.1074/jbc.274.16.11344.
Rembold CM, Foster DB, Strauss JD, Wingard CJ, Van Eyk JE: cGMP-mediated phosphorylation of heat shock protein 20 may cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery. Journal of Physiology-London. 2000, 524: 865-878. 10.1111/j.1469-7793.2000.00865.x.
Komalavilas P, Penn RB, Flynn CR, Thresher J, Lopes LB, Furnish EJ, Guo M, Pallero MA, Murphy-Ullrich JE, Brophy CM: The small heat shock-related protein, HSP20, is a cAMP-dependent protein kinase substrate that is involved in airway smooth muscle relaxation. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2008, 294: L69-L78. 10.1152/ajplung.00235.2007.
Flynn CR, Komalavilas P, Tessier D, Thresher J, Niederkofler EE, Dreiza CM, Nelson RW, Panitch A, Joshi L, Brophy CM: Transduction of biologically active motifs of the small heat shock-related protein, HSP20, leads to relaxation of vascular smooth muscle. Faseb Journal. 2003, 17: 1358-1360.
Tessier DJ, Komalavilas P, Liu B, Kent CK, Thresher JS, Dreiza CM, Panitch A, Joshi L, Furnish E, Stone W, Fowl R, Brophy CM: Transduction of peptide analogs of the small heat shock-related protein HSP20 inhibits intimal hyperplasia. Journal of Vascular Surgery. 2004, 40: 106-114. 10.1016/j.jvs.2004.03.028.
Woodrum D, Pipkin W, Tessier D, Komalavilas P, Brophy CM: Phosphorylation of the heat shock-related protein, HSP20, mediates cyclic nucleotide-dependent relaxation. Journal of Vascular Surgery. 2003, 37: 874-881. 10.1067/mva.2003.153.
Brophy CM, Lamb S, Graham A: The small heat shock-related protein-20 is an actin-associated protein. Journal of Vascular Surgery. 1999, 29: 326-333. 10.1016/S0741-5214(99)70385-X.
Bukach OV, Marston SB, Gusev NB: Small heat shock protein with apparent molecular mass 20 kDa (Hsp20, HspB6) is not a genuine actin-binding protein. Journal of Muscle Research and Cell Motility. 2005, 26: 175-181. 10.1007/s10974-005-9008-7.
Tessier DJ, Komalavilas P, Panitch A, Joshi L, Brophy CM: The small heat shock protein (HSP) 20 is dynamically associated with the actin cross-linking protein actinin. Journal of Surgical Research. 2003, 111: 152-157. 10.1016/S0022-4804(03)00113-6.
Dreiza CM, Brophy CM, Komalavilas P, Furnish EJ, Joshi L, Pallero MA, Murphy-Ullrich JE, von Rechenberg M, Ho YSJ, Richardson B, Xu N, Zhen Y, Peltier JM, Panitch A: Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics. Faseb Journal. 2004, 18: 261-263.
Gohla A, Bokoch GM: 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Current Biology. 2002, 12: 1704-1710. 10.1016/S0960-9822(02)01184-3.
Rubio MP, Geraghty KM, Wong BHC, Wood NT, Campbell DG, Morrice N, Mackintosh C: 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochemical Journal. 2004, 379: 395-408. 10.1042/BJ20031797.
Yaffe MB: How do 14-3-3 proteins work? - Gatekeeper phosphorylation and the molecular anvil hypothesis. Febs Letters. 2002, 513: 53-57. 10.1016/S0014-5793(01)03288-4.
Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T: Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 2002, 108: 233-246. 10.1016/S0092-8674(01)00638-9.
An SS, Hai CM: Mechanical signals and mechanosensitive modulation of intracellular [Ca2+] in smooth muscle. American Journal of Physiology-Cell Physiology. 2000, 279: C1375-C1384.
An SS, Fabry B, Trepat X, Wang N, Fredberg JJ: Do biophysical properties of the airway smooth muscle in culture predict airway hyperresponsiveness?. American Journal of Respiratory Cell and Molecular Biology. 2006, 35: 55-64. 10.1165/rcmb.2005-0453OC.
An SS, Laudadio RE, Lai J, Rogers RA, Fredberg JJ: Stiffness changes in cultured airway smooth muscle cells. American Journal of Physiology-Cell Physiology. 2002, 283: C792-C801.
An SS, Kim J, Ahn K, Trepat X, Drake KJ, Kumar S, Ling GY, Purington C, Rangasamy T, Kensler TW, Mitzner W, Fredberg JJ, Biswal S: Cell stiffness, contractile stress and the role of extracellular matrix. Biochemical and Biophysical Research Communications. 2009, 382: 697-703. 10.1016/j.bbrc.2009.03.118.
Bursac P, Lenormand G, Fabry B, Oliver M, Weitz DA, Viasnoff V, Butler JP, Fredberg JJ: Cytoskeletal remodelling and slow dynamics in the living cell. Nature Materials. 2005, 4: 557-561. 10.1038/nmat1404.
Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ: Scaling the microrheology of living cells. Physical Review Letters. 2001, 87: 148102-10.1103/PhysRevLett.87.148102.
Trepat X, Deng LH, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ: Universal physical responses to stretch in the living cell. Nature. 2007, 447: 592-595. 10.1038/nature05824.
Pechkovsky DV, Hackett TL, An SS, Shahen F, Murray LA, Knight DA: Human lung parenchyma but not proximal bronchi produces fibroblasts with enhanced TGFβ signaling and αSMA expression. American Journal of Respiratory Cell and Molecular Biology. 2010, 43: 641-651. 10.1165/rcmb.2009-0318OC.
Deshpande DA, Wang WC, Mcllmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB: Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nature Medicine. 2010, 16: 1299-1304. 10.1038/nm.2237.
Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ: Traction fields, moments, and strain energy that cells exert on their surroundings. American Journal of Physiology-Cell Physiology. 2002, 282: C595-C605.
Wang N, Tolic-Norrelykke IM, Chen JX, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D: Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. American Journal of Physiology-Cell Physiology. 2002, 282: C606-C616.
An SS, Fabry B, Mellema M, Bursac P, Gerthoffer WT, Kayyali US, Gaestel M, Shore SA, Fredberg JJ: Role of heat shock protein 27 in cytoskeletal remodeling of the airway smooth muscle cell. Journal of Applied Physiology. 2004, 96: 1701-1713. 10.1152/japplphysiol.01129.2003.
Dandurand RJ, Wang CG, Phillips NC, Eidelman DH: Responsiveness of Individual Airways to Methacholine in Adult-Rat Lung Explants. Journal of Applied Physiology. 1993, 75: 364-372.
Wang CG, Almirall JJ, Dolman CS, Dandurand RJ, Eidelman DH: In vitro bronchial responsiveness in two highly inbred rat strains. Journal of Applied Physiology. 1997, 82: 1445-1452.
Peltier JM, Askovic S, Becklin RR, Chepanoske CL, Ho YSJ, Kery V, Lai SP, Mujtaba T, Pyne M, Robbins PB, von Rechenberg M, Richardson B, Savage J, Shelfield P, Thompson S, Weir L, Widjaja K, Xu N, Zhen Y, Boniface JJ: An integrated strategy for the discovery of drug targets by the analysis of protein-protein interactions. International Journal of Mass Spectrometry. 2004, 238: 119-130. 10.1016/j.ijms.2003.12.039.