Pointwise a posteriori error estimates for monotone semi-linear equations

Springer Science and Business Media LLC - Tập 104 - Trang 515-538 - 2006
Ricardo H. Nochetto1, Alfred Schmidt2, Kunibert G. Siebert3, Andreas Veeser4
1Department of Mathematics, and Institute of Physical Science and Technology, University of Maryland, College Park, USA
2Zentrum für Technomathematik,Fachbereich 3 Mathematik und Informatik, Universität Bremen, Bremen, Germany
3Institut für Mathematik, Universität Augsburg, Augsburg, Germany
4Dipartimento di Matematica, Università degli Studi di Milano, Milano, Italy

Tóm tắt

We derive upper and lower a posteriori estimates for the maximum norm error in finite element solutions of monotone semi-linear equations. The estimates hold for Lagrange elements of any fixed order, non-smooth nonlinearities, and take numerical integration into account. The proof hinges on constructing continuous barrier functions by correcting the discrete solution appropriately, and then applying the continuous maximum principle; no geometric mesh constraints are thus required. Numerical experiments illustrate reliability and efficiency properties of the corresponding estimators and investigate the performance of the resulting adaptive algorithms in terms of the polynomial order and quadrature.

Tài liệu tham khảo