Pointwise a posteriori error estimates for monotone semi-linear equations
Tóm tắt
We derive upper and lower a posteriori estimates for the maximum norm error in finite element solutions of monotone semi-linear equations. The estimates hold for Lagrange elements of any fixed order, non-smooth nonlinearities, and take numerical integration into account. The proof hinges on constructing continuous barrier functions by correcting the discrete solution appropriately, and then applying the continuous maximum principle; no geometric mesh constraints are thus required. Numerical experiments illustrate reliability and efficiency properties of the corresponding estimators and investigate the performance of the resulting adaptive algorithms in terms of the polynomial order and quadrature.
Tài liệu tham khảo
Adams R.A. Sobolev Spaces, vol. 65 of Pure and Applied Mathematics. Academic Press, Inc., a subsidiary of Harcourt Brace Jovanovich, Publishers, New York, San Francisco, London (1975)
Ainsworth M., Oden J.T. (2000) A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York
Alt H.W., Phillips D. (1986) A free boundary problem for semilinear elliptic equations. J. Reine Angew. Math. 368, 63–107
Arnold, D.N., Mukherjee, A., Pouly, L.: Adaptive finite elements and colliding black holes. Numerical analysis 1997 (Dundee), 1–15, Pitman Res. Notes Math. Ser., 380, Longman, Harlow (1998)
Babuška I., Rheinboldt W. (1978) Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754
Brenner S.C., Scott L.R. (2002) The mathematical theory of finite element methods. Springer, Berlin Heidelberg New York
Brezis H., Strauss W. (1973) Semilinear second-order elliptic equations in L 1. J. Math. Soc. Japan, 25, 565–590
Callegari A.J., Nachman A. (1980) A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 30, 275–281
Ciarlet P.G. (1980) The finite element method for elliptic problems. North-Holland, Amsterdam
Dari E., Durán R.G., Padra C. (2000) Maximum norm error estimators for three-dimensional elliptic problems. SIAM J. Numer. Anal. 37, 683–700
Evans L.C. (1998) Partial differential equations. In: Humphreys J.E., Saltman D.J., Sattinger D., Shaneson J.L., (eds) Graduate Studies in Mathematics, vol 19. AMS, Providence
Gilbarg D., Trudinger N.S. (1983) Elliptic partial diffferential equations of second order. Springer, Berlin Heidelberg New York
Grisvard P. (1985) Elliptic problems in nonsmooth domains. Pitman, London
Henson V.E., Shaker A.W. (1996) Theory and numerics for a semilinear PDE in the theory of pseudoplastic fluids. Appl. Anal. 63, 271–285
Kinderlehrer D., Stampacchia G. (1980) An introduction to variational inequalities and their applications vol 88 of Pure Appl Math. Academic, New York
Lazer A.C., McKenna P.J. (1991) On a singular nonlinear elliptic boundary value problem. Proc. AMS 111, 721–730
Nochetto R.H. (1995) Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comp. 64, 1–22
Nochetto R.H. (1988) Sharp L ∞-error estimates for semilinear elliptic problems with free boundaries. Numer. Math. 54, 243–255
Nochetto R.H., Siebert K.G., Veeser A. (2003) Pointwise a~posteriori error control for elliptic obstacle problems. Numer. Math. 95, 163–195
Nochetto R.H., Siebert K.G., Veeser A. (2005) Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42, 2118–2135
Ortega J.M., Rheinboldt W.C. (1970) Iterative solution of nonlinear equations in several variables. Academic, New York
Phillips D. (1983) Hausdorff measure estimates of a free boundary for a minimum problem. Comm. Partial Differ. Equ. 8, 1409–1454
Richardson W.B. Jr. (2000) Sobolev preconditioning for the Poisson-Boltzmann equation. Comput. Meth. Appl. Mech. Eng. 181, 425–436
Schmidt A., Siebert K.G. (2005) Design of adaptive finite element software: the finite element toolbox ALBERTA. LNCSE Series, vol 42. Springer, Berlin Heidelberg New York
Schmidt A., Siebert K.G. (2001) ALBERT – Software for scientific computations and applications. Acta Math. Univ. Comenianae 70, 105–122
Verfürth R. (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley, Teubner