New materialist ontologies in mathematics education: the body in/of mathematics
Tóm tắt
In this paper we study the mathematical body as an assemblage of human and non-human mathematical concepts. We argue that learners’ bodies are always in the process of becoming assemblages of diverse and dynamic materialities. Following the work of the historian of science Karen Barad, we argue that mathematical concepts must be considered dynamic material, and we suggest a “pedagogy of the concept” that animates concepts as both logical and ontological. We draw on the philosopher of mathematics Gilles Châtelet in order to pursue this argument, elaborating on the way that mathematical concepts partake of the mobility of the virtual, while learners, in engaging with this mobility, enter a material process of becoming. We show how the concept of virtuality allows us to look at mathematical concepts in school curriculum in new ways.
Tài liệu tham khảo
Barad, K. (2003). Posthumanist performativity: How matter comes to matter. Signs, 28(3), 801–831.
Barad, K. (2007). Meeting the universe halfway: Quantum physics and the entanglement of matter and meaning. Durham: Duke University Press.
Bostock, D. (2009). The philosophy of mathematics: An introduction. Oxford: Wiley-Blackwell.
Butler, J. (1993). Bodies that matter. New York: Routledge.
Châtelet, G. (2000/1993). Les enjeux du mobile. Paris: Seuil. (Engl. transl., by R. Shore & M. Zagha: Figuring space: Philosophy, Mathematics and Physics). Dordrecht: Kluwer Academy Press, 2000.
Cheah, P. (2010). Non-dialectical materialism. In D. Coole & S. Frost (Eds.), New materialisms: Ontology, agency, and politics (pp. 70–91). London: Duke University Press.
Coole, D., & Frost, S. (Eds.). (2010). New materialisms: Ontology, agency, and politics. London: Duke University Press.
Cutler, A., & MacKenzie, I. (2011). Bodies of learning. In L. Guillaume & J. Hughes (Eds.), Deleuze and the body (pp. 53–72). Edinburgh: Edinburgh University Press.
Davis, B., & Simmt, E. (2003). Understanding learning systems: Mathematics education and complexity science. Journal for Research in Mathematics Education, 34(2), 137–167.
de Freitas, E., & Sinclair, N. (2012). Diagram, gesture, agency: Theorizing embodiment in the mathematics classroom. Educational Studies in Mathematics, 80(1–2), 133–152.
Deleuze, G. (1994). Difference and repetition. (Trans. Paul Patton). New York: Columbia University Press.
Ellsworth, E. (2005). Places of learning: Media, architecture, pedagogy. New York: Routledge.
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 21, 1–25.
Grosz, E. (1994). Volatile bodies: Towards a corporeal feminism. Indiana: Indiana University Press.
Grosz, E. (2001). Architecture from the outside: Essays on virtual and real space. Cambridge: MIT Press.
Hall, R., & Nemirovsky, R. (2011). Histories of modal engagements with mathematical concepts: A theory memo. Retrieved from http://www.sci.sdsu.edu/tlcm/all-articles/Histories_of_modal_engagement_with_mathematical_concepts.pdf
Harroway, D. (2008). When species meet. Minnesota: University of Minnesota Press.
Hwang, S., & Roth, W. M. (2011). Scientific and mathematical bodies: The interface of culture and mind. Rotterdam: Sense.
Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.
Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. New York: Oxford University Press.
Malafouris, L. (2008). Between drains, bodies and things: Tectonoetic awareness and extended self. Philosophical Transactions of the Royal Society B, 363, 1993–2002.
Massumi, B. (2002). Parables for the virtual: Movement, affect, sensation. Durham: Duke University Press.
Maturana, H. R., & Varela, F. J. (1987). The tree of knowledge: The biological roots of human understanding. Boston: Shambhala.
Mendick, H. (2006). Masculinities in mathematics. Maidenhead: Open University Press.
Nemirovsky, R., & Ferrara, F. (2009). Mathematical imagination and embodied cognition. Educational Studies of Mathematics, 70(2), 159–174.
Núñez, R., Edwards, L., & Matos, J. F. (1998). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics, (39), pp. 45–65.
Pickering, A. (1995). The mangle of practice: Time, agency and science. Chicago: University of Chicago Press.
Radford, L. (2008). The ethics of being and knowing: Towards a cultural theory of learning. In L. Radord, G. Schubring & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom and culture (pp. 215–234). Sense Publishing.
Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70(3), 111–126.
Radford, L. (2012). Towards an embodied, cultural, material conception of mathematics cognition. 12th International Congress on Mathematical Education.
Roth, W.-M. (2010). Incarnation: Radicalizing embodiment of mathematics. For the learning of Mathematics, 30(2), 8–17.
Saxe, G. B., Shaughnessy, M. M., Shannon, A., Langer-Osuna, J. M., Chinn, R., & Gearhart, M. (2007). Learning about fractions as points on the number line. The learning of mathematics, 69th Yearbook of the The National Council of Teachers of Mathematics (pp. 221–236). Reston: NCTM.
Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.
Sheets-Johnstone, M. (2012). Movement and mirror neurons: a challenging and choice conversation. Phenomenology and the cognitive sciences, 11(3), 385–401.
Sinclair, N., de Freitas, E., & Ferrara, F. (2013). Virtual encounters: The murky and furtive world of mathematical inventiveness. ZDM, 45(4).
Tall, D. (2011). Crystalline concepts in long-term mathematical invention and discovery. For the Learning of Mathematics, 31(1), 3–8.
Walkerdine, V. (1988). The Mastery of reason: Cognitive development and the production of rationality. New York: Routledge.