Analysis and Optimization of Laying Process Parameters of Carbon Fiber Reinforced Thermoplastic Composites for Additive Manufacturing Using Robot
International Journal of Precision Engineering and Manufacturing - Trang 1-25 - 2023
Tóm tắt
The research object of this paper is carbon fiber reinforced thermoplastic composite CF/PEEK. Through control planning of robot motion, simulation and experiment on Paving pressure and paving speed are carried out, and on this basis analysis and optimization are carried out. In the analysis of laying pressure, the deformation of rigid press roll and flexible press roll under different pressures is analyzed by finite element simulation. According to the laying experiment, it is certain that the flexible press roll can obtain better laying quality when laying; different pressures are selected to lay the tow. The laying range of these pressures is determined as 50–250 N according to the quality of the tow. In the temperature experiment, the temperature change of the tow in different layers under different laying speeds is analyzed. Through the experiment, it is found that there is a strong correlation between the laying speed and the laying temperature. The experiment also found that under a certain laying speed, selecting the corresponding heating temperature range can obtain higher laying quality and that selecting appropriate paving process parameters, conducting paving tests, and conducting trajectory planning based on the process can effectively reduce paving defects. Finally, in order to solve the problem of path planning for thin-wall structure carbon fiber placement, a natural path algorithm based on Laplace smoothing is proposed. The algorithm obtains the grid surface through the discretization of the thin-walled surface structure, smooths the grid using the Laplace method, and uses the natural path method to obtain the trajectory. At the same time, the algorithm also considers the layout path boundary and layer design, etc. The problem is to complete the trajectory planning through the fiber path assisted generation software and compare the trajectory points with the traditional surface mesh method to verify the rationality of the trajectory algorithm.
Tài liệu tham khảo
Gao, M., Li, L., Wang, Q., et al. (2022). Integration of additive manufacturing in casting: Advances, challenges, and prospects. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 305–322. https://doi.org/10.1007/s40684-021-00323-w
Kwon, S. B., Nagaraj, A., Xi, D., et al. (2023). Studying crack generation mechanism in single-crystal sapphire during ultra-precision machining by MD simulation-based slip/fracture activation model. International Journal of Precision Engineering and Manufacturing., 24, 715–727. https://doi.org/10.1007/s12541-023-00776-w
Lee, C. M., Woo, W. S., Baek, J. T., et al. (2016). Laser and arc manufacturing processes: A review. International Journal of Precision Engineering and Manufacturing, 17, 973–985. https://doi.org/10.1007/s12541-016-0119-4
Amaechi, C. V., Adefuye, E. F., Kgosiemang, I. M., Huang, Bo., & Amaechi, E. C. (2022). Scientometric review for research patterns on additive manufacturing of lattice structures. Materials, 15(15), 5323. https://doi.org/10.3390/ma15155323
Zheng, Y., Zhang, W., Baca Lopez, D. M., & Ahmad, R. (2021). Scientometric analysis and systematic review of multi-material additive manufacturing of polymers. Polymers, 13(12), 1957. https://doi.org/10.3390/polym13121957
Zheng, H., Cong, M., Liu, D., Dong, H., & Liu, Y. (2019). Robot path optimization for laser cladding forming. Industrial Robot, 46(2), 281–289. https://doi.org/10.1108/IR-07-2018-0148
Moussa, A., Rahman, S., Xu, M., Tanzer, M., & Pasini, D. (2020). Topology optimization of 3D-printed structurally porous cage for acetabular reinforcement in total hip arthroplasty. Journal of the Mechanical Behavior of Biomedical Materials, 105, 103705. https://doi.org/10.1016/j.jmbbm.2020.103705
Unsal, S. S., Yildirim, T., & Kayalar, M. (2022). Comparison of two coracoid process transfer techniques on stress shielding using three-dimensional finite-element model. Journal of Orthopaedic Surgery and Research, 17, 371. https://doi.org/10.1186/s13018-022-03264-5
Heider, D., Piovoso, M. J., & Gillespie, J. W., Jr. (2002). Application of a neural network to improve an automated thermoplastic tow-placement process. Journal of Process Control, 12(1), 101–111. https://doi.org/10.3390/app12031548
Heider, D., Piovoso, M. J., & Gillespie, J. W. (2003). A neural network model-based open-loop optimization for the automated thermoplastic composite tow-placement system. Composites Part A: Applied Science and Manufacturing, 34(8), 791–799. https://doi.org/10.1016/S1359-835X(03)00120-9
Pitchumani, R., Gillespie, J. W., & Lamontia, M. A. (1997). Design and optimization of a thermoplastic tow-placement process with in-situ consolidation. Journal of Composite Materials, 31(3), 244–275. https://doi.org/10.1177/002199839703100302
Sonmez, F. O., & Akbulut, M. (2007). Process optimization of tape placement for thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 38(9), 2013–2023. https://doi.org/10.1016/j.compositesa.2007.05.003
Virulsri, C., Tangpornprasert, P., & Romtrairat, P. (2015). Femoral hip prosthesis design for Thais using multi-objective shape optimization. Materials & Design, 68, 1–7. https://doi.org/10.1016/j.matdes.2014.11.027
Tierney, J., & Gillespie, J., Jr. (2006). Modeling of in situ strength development for the thermoplastic composite tow placement process. Journal of Composite Materials, 40(16), 1487–1506. https://doi.org/10.1177/0021998306060162
Tumkor, S., Turkmen, N., Chassapis, C., & Manoochehri, S. (2001). Modeling of heat transfer in thermoplastic composite tape lay-up manufacturing. International Communications in Heat and Mass Transfer, 28(1), 49–58. https://doi.org/10.1016/S0735-1933(01)00212-3
Mantell, S. C., & Springer, G. S. (1992). Manufacturing process models for thermoplastic composites. Journal of Composite Materials, 26(16), 2348–2377. https://doi.org/10.1177/002199839202601602
Marattukalam, J. J., Pacheco, V., Karlsson, D., Riekehr, L., Lindwall, J., Forsberg, F., Jansson, U., Sahlberg, M., & Hjörvarsson, B. (2020). Development of process parameters for selective laser melting of a Zr-based bulk metallic glass. Additive Manufacturing, 33, 101124. https://doi.org/10.1016/j.addma.2020.101124
Guoqing, Z., Junxin, L., Chengguang, Z., Juanjuan, X., Xiaoyu, Z., & Anmin, W. (2021). Design optimization and manufacturing of bio-fixed tibial implants using 3D printing technology. Journal of the Mechanical Behavior of Biomedical Materials, 117, 104415. https://doi.org/10.1016/j.jmbbm.2021.104415
Carstensen, J. V., & Guest, J. K. (2018). Projection-based two-phase minimum and maximum length scale control in topology optimization. Structural and Multidisciplinary Optimization, 58(5), 1845–1860. https://doi.org/10.1007/s00158-018-2066-4
Wu, J., Aage, N., Westermann, R., & Sigmund, O. (2018). Infill optimization for additive manufacturing—Approaching bone-like porous structures. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1127–1140. https://doi.org/10.1109/TVCG.2017.2655523
Ran, Q., Yang, W., Hu, Y., Shen, X., et al. (2018). Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. Journal of the Mechanical Behavior of Biomedical Materials, 84, 1–11. https://doi.org/10.1016/j.jmbbm.2018.04.010
Leuders, S., Thöne, M., Riemer, A., Niendorf, T., et al. (2013). On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue, 48, 300–307. https://doi.org/10.1016/j.ijfatigue.2012.11.011
Li, L., Wang, X., Xu, D., et al. (2014). A placement path planning algorithm based on meshed triangles for carbon fiber reinforce composite component with revolved shape. International Journal on Control Systems & Applications, 1(1), 23–32.
Zeng, W., Xiao, J., Li, Y., Huan, D., Wang, P., & Xu, T. (2010). Automatic filament laying trajectory planning and coverage analysis of gyratory body. Journal of Astronautics, 31(01), 239–243.
Li, S., Wang, X., & Zhu, L. (2009). Path planning in composite filament laying. Aerospace Material Technology, 39(2), 25-29,41. https://doi.org/10.3969/j.issn.1007-2330.2009.02.006
Hale, R. D. et al. (2004). Integrated design and analysis tools for reduced weight, affordable fiber steered composites. https://doi.org/10.21236/ada426844.
Lu, M., Zhou, L., Wang, X., et al. (2011). Multilayer filament path generation algorithm for cylindrical components. Journal of Aeronautics, 1993–1996, 32(1), 6.
Belhaj, M., Deleglise, M., Comas-Cardona, S., Demouveau, H., Binetruy, C., Duval, C., & Figueiredo, P. (2013). Dry fiber automated placement of carbon fibrous preforms. Composites Part B: Engineering, 50, 107–111. https://doi.org/10.1016/j.compositesb.2013.01.014
Ückert, C., Delisle, D. P. P., Bach, T., Hühne, C., & Stüve, J. (2018). Design optimization of a CFRP wing cover for the AFP process. In 6th aircraft structural design conference, 09.-11. Okt. 2018, Bristol, Großbrittanien.
Sutradhar, A., Park, J., & Carrau, D. (2016). Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Medical & Biological Engineering & Computing, 54, 1123–1135. https://doi.org/10.1007/s11517-015-1418-0
Aufa, A. N., Hassan, M. Z., & Ismail, Z. (2022). Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants: Prospect development. Journal of Alloys and Compounds, 896, 163072. https://doi.org/10.1016/j.jallcom.2021.163072
Santos Macias, J. G., Buffière, J. Y., Maire, E., Adrien, J., Elangeswaran, C., et al. (2018). On the mechanical behaviour of SLM AlSi10Mg and its improvement by friction stir processing. In EMMC16–16th European mechanics of materials conference. http://hdl.handle.net/2078.1/195889.
Chong, D. Y., Hansen, U. N., & Amis, A. A. (2016). Cementless MIS mini-keel prosthesis reduces interface micromotion versus standard stemmed tibial components. Journal of Mechanics in Medicine and Biology, 16(05), 1650070. https://doi.org/10.1142/S0219519416500706
Peto, M., Ramírez-Cedillo, E., Hernández, A., & Siller, H. R. (2019). Structural design optimization of knee replacement implants for additive manufacturing. Procedia Manufacturing, 34, 574–583. https://doi.org/10.1016/j.promfg.2019.06.222
Chang, C. S., Wu, K. T., Han, C. F., et al. (2022). Establishment of the model widely valid for the melting and vaporization zones in selective laser melting printings via experimental verifications. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 143–162. https://doi.org/10.1007/s40684-020-00283-7
Li, P., Wu, Y., & Yvonnet, J. (2021). A SIMP-phase field topology optimization framework to maximize quasi-brittle fracture resistance of 2D and 3D composites. Theoretical and Applied Fracture Mechanics, 114, 102919. https://doi.org/10.1016/j.tafmec.2021.102919
Löber, L., Flache, C., Petters, R., Kühn, U., & Eckert, J. (2013). Comparison of different post processing technologies for SLM generated 316l steel parts. Rapid Prototyping Journal, 19(3), 173–179. https://doi.org/10.1108/13552541311312166
Gustafsson, A., Tognini, M., Bengtsson, F., Gasser, T. C., Isaksson, H., et al. (2021). Subject-specific fe models of the human femur predict fracture path and bone strength under single-leg-stance loading. Journal of the Mechanical Behavior of Biomedical Materials, 113, 104118. https://doi.org/10.1016/j.jmbbm.2020.104118
Simoneau, C., Terriault, P., Jetté, B., Dumas, M., & Brailovski, V. (2017). Development of a porous metallic femoral stem: Design, manufacturing, simulation and mechanical testing. Materials & Design, 114, 546–556. https://doi.org/10.1016/j.matdes.2016.10.064
Tezara, C., Zalinawati, M., Siregar, J. P., et al. (2022). Effect of stacking sequences, fabric orientations, and chemical treatment on the mechanical properties of hybrid woven jute–ramie composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 273–285. https://doi.org/10.1007/s40684-021-00311-0
Vrancken, B., Thijs, L., Kruth, J. P., & Van Humbeeck, J. (2012). Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties. Journal of Alloys and Compounds, 541, 177–185. https://doi.org/10.1016/j.jallcom.2012.07.022
Ren, Z., Fang, F., Yan, N., et al. (2022). State of the art in defect detection based on machine vision. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 661–691. https://doi.org/10.1007/s40684-021-00343-6
Facchini, L., Magalini, E., Robotti, P., Molinari, A., & Höges, S. (2010). Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping Journal, 16(6), 450–459. https://doi.org/10.1108/13552541011083371
Ahmadi, A., Mirzaeifar, R., Moghaddam, N. S., Turabi, A. S., Karaca, H. E., et al. (2016). Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: A computational framework. Materials & Design, 112, 328–338. https://doi.org/10.1016/j.matdes.2016.09.043
Yin, S. (2013). Study on planning constraints of free-form automatic wire laying line. Hubei: Wuhan University of Technology. https://doi.org/10.7666/d.Y2363990.
Rizzo, F., Pinto, F., & Meo, M. (2019). 3D bio-inspired hierarchical discontinuous CFRP with enhanced ductility. Composite Structures, 226, 111202. https://doi.org/10.1016/j.compstruct.2019.111202
Sun, L., Ren, X., He, J., et al. (2022). Melting cell based compensated design method for improving dimensional accuracy of additively manufactured thin channels. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 383–394. https://doi.org/10.1007/s40684-020-00299-z
Jerin, W. R., Park, S. J., & Moon, S. K. (2023). A design optimization framework for 3D printed lattice structures. International Journal of Precision Engineering and Manufacturing-Smart Technology, 1(2), 145–156. https://doi.org/10.57062/ijpem-st.2023.0059
Shafighfard, T., Demir, E., & Yildiz, M. (2019). Design of fiber-reinforced variable-stiffness composites for different open-hole geometries with fiber continuity and curvature constraints. Composite Structures, 226, 111280. https://doi.org/10.1016/j.compstruct.2019.111280
Yamazaki, K., Ishigami, H., & Abe, A. (2008). An adaptive finite element method for minor shape modification in optimization algorithms. IEEE Transactions on Magnetics, 44(6), 1202–1205. https://doi.org/10.1109/TMAG.2007.916252
Liu, Z., Gu, X., Guo, H., et al. (2020). Planning method of automatic laying forming trajectory of carbon fiber propeller. China Mechanical Engineering, 31(17), 2079–2084+2094.
Song, R., Liu, Y., Martin, R. R., et al. (2013). Mesh saliency via spectral processing. ACM Transactions on Graphics, 33(1), 06-1–06-17. https://doi.org/10.1145/2530691
Vartziotis, D., Bohnet, D., & Himpel, B. (2018). GETOpt mesh smoothing: Putting GETMe in the framework of global optimization-based schemes. Finite Elements in Analysis and Design, 147, 10–20. https://doi.org/10.1016/j.finel.2018.04.010
Zheng, H., Cong, M., Liu, D., et al. (2019). Optimization of STL model and layer shape for laser cladding forming. The International Journal of Advanced Manufacturing Technology, 100(1/4), 599–608. https://doi.org/10.1007/s00170-018-2714-2
Di, W., Yongqiang, Y., Xubin, S., & Yonghua, C. (2012). Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM. The International Journal of Advanced Manufacturing Technology, 58(9), 1189–1199. https://doi.org/10.1007/s00170-011-3443-y