Toward accurate measurement of electromagnetic field by retrieving and refining the center position of non-uniform diffraction disks in Lorentz 4D-STEM

Ultramicroscopy - Tập 250 - Trang 113745 - 2023
Lijun Wu1, Myung-Geun Han1, Yimei Zhu1
1Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, 11973, USA

Tài liệu tham khảo

Beleggia, 2004, On the transport of intensity technique for phase retrieval, Ultramicroscopy, 102, 37, 10.1016/j.ultramic.2004.08.004 Zhu, 2001, Understanding magnetic structures in permanent magnets via in situ Lorentz microscopy, interferometric and noninterferometric phase-reconstructions, J. Electron Microsc. (Tokyo), 50, 447, 10.1093/jmicro/50.6.447 Volkov, 2002, A new symmetrized solution for phase retrieval using the transport of intensity equation, Micron, 33, 411, 10.1016/S0968-4328(02)00017-3 Chapman, 1978, Direct determination of magnetic domain-wall profiles by differential phase-contrast electron-microscopy, Ultramicroscopy, 3, 203, 10.1016/S0304-3991(78)80027-8 Chapman, 1984, The investigation of magnetic domain-structures in thin foils by electron-microscopy, J. Phys. D-Appl. Phys., 17, 623, 10.1088/0022-3727/17/4/003 Matsumoto, 2016, Jointed magnetic skyrmion lattices at a small-angle grain boundary directly visualized by advanced electron microscopy, Sci. Rep., 6, 10.1038/srep35880 Kohno, 2022, Real-space visualization of intrinsic magnetic fields of an antiferromagnet, Nature, 602, 234, 10.1038/s41586-021-04254-z Dekkers, 1974, Differential phase-contrast in ASTEM, Optik (Stuttg), 41, 452 Tonomura, 1980, Direct observation of fine-structure of magnetic domain-walls by electron holography, Phys. Rev. Lett., 44, 1430, 10.1103/PhysRevLett.44.1430 Tonomura, 1987, Applications of electron holography, Rev. Mod. Phys., 59, 639, 10.1103/RevModPhys.59.639 Aharonov, 1959, Significance of electromagnetic potentials in the quantum theory, Phys. Rev., 115, 485, 10.1103/PhysRev.115.485 Krajnak, 2016, Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast, Ultramicroscopy, 165, 42, 10.1016/j.ultramic.2016.03.006 Nguyen, 2022, Disentangling Magnetic and Grain Contrast in Polycrystalline FeGe Thin Films Using Four-Dimensional Lorentz Scanning Transmission Electron Microscopy, Phys. Rev. Appl., 17, 10.1103/PhysRevApplied.17.034066 Clark, 2018, Probing the limits of the rigid-intensity-shift model in differential-phase-contrast scanning transmission electron microscopy, Phys. Rev. A, 97, 10.1103/PhysRevA.97.043843 Boureau, 2021, High-sensitivity mapping of magnetic induction fields with nanometer-scale resolution: comparison of off-axis electron holography and pixelated differential phase contrast, J. Phys. D-Appl. Phys., 54 Almeida, 2020, Direct visualization of the magnetostructural phase transition in nanoscale FeRh thin films using differential phase contrast imaging, Phys. Rev. Mater., 4 Murakami, 2020, Magnetic-structure imaging in polycrystalline materials by specimen-tilt series averaged DPC STEM, Microscopy, 69, 312, 10.1093/jmicro/dfaa029 Wang, 2022, Extracting weak magnetic contrast from complex background contrast in plan-view FeGe thin films, Ultramicroscopy, 232 Kirkland, 1998 Spence, 1992 Mir, 2017, Characterisation of the Medipix3 detector for 60 and 80keV electrons, Ultramicroscopy, 182, 44, 10.1016/j.ultramic.2017.06.010 Ma, 2014, Strong coupling of the iron-quadrupole and anion-dipole polarizations in Ba(Fe1-xCox)(2)As-2, Phys. Rev. Lett., 112, 5, 10.1103/PhysRevLett.112.077001 Wu, 2004, Valence-electron distribution in MgB2 by accurate diffraction measurements and first-principles calculations, Phys. Rev. B, 69, 8, 10.1103/PhysRevB.69.064501 Wu, 2020, Mapping valence electron distributions with multipole density formalism using 4D-STEM, Ultramicroscopy, 219 Wu, 2013, Origin of phonon glass-electron crystal behavior in thermoelectric layered cobaltate, Adv. Funct. Mater., 23, 5728, 10.1002/adfm.201301098 Wang, 2021, Photoinduced anisotropic lattice dynamic response and domain formation in thermoelectric SnSe, Npj Quant. Mater., 6, 10.1038/s41535-021-00400-y Duda, 1972, Use of Hough transformation to detect lines and curves in pictures, Commun. ACM, 15, 11, 10.1145/361237.361242 Atherton, 1999, Size invariant circle detection, Image Vis. Comput., 17, 795, 10.1016/S0262-8856(98)00160-7 Yuan, 2019, Lattice strain mapping using circular Hough transform for electron diffraction disk detection, Ultramicroscopy, 207 Dennis, 1999, A trust-region approach to nonlinear systems of equalities and inequalities, Siam J. Optim., 9, 291, 10.1137/S1052623494276208 Intel, Intel Math Kernel library. p. https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html#gs.nj640q. Lau, 2005, Direct correlation of reversal rate dynamics to domain configurations in micron-sized permalloy elements, J. Appl. Phys., 97 Lau, 2006, Energy barrier to magnetic vortex nucleation, Appl. Phys. Lett., 88, 10.1063/1.2150272 Lau, 2007, Common reversal mechanisms and correlation between transient domain states and field sweep rate in patterned Permalloy structures, J. Appl. Phys., 102, 10.1063/1.2769779 Pekin, 2017, Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping, Ultramicroscopy, 176, 170, 10.1016/j.ultramic.2016.12.021 Savitzky, 2021, py4DSTEM: a software package for four-dimensional scanning transmission electron microscopy data analysis, Microsc. Microanal., 27, 712, 10.1017/S1431927621000477 Muller, 2012, Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy, Microsc. Microanal., 18, 995, 10.1017/S1431927612001274 Mahr, 2015, Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction, Ultramicroscopy, 158, 38, 10.1016/j.ultramic.2015.06.011 Wang, 2022, AutoDisk: automated diffraction processing and strain mapping in 4D-STEM, Ultramicroscopy, 236 Zeltmann, 2020, Patterned probes for high precision 4D-STEM bragg measurements, Ultramicroscopy, 209 Guzzinati, 2019, Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping, Appl. Phys. Lett., 114, 10.1063/1.5096245