Toward accurate measurement of electromagnetic field by retrieving and refining the center position of non-uniform diffraction disks in Lorentz 4D-STEM
Tài liệu tham khảo
Beleggia, 2004, On the transport of intensity technique for phase retrieval, Ultramicroscopy, 102, 37, 10.1016/j.ultramic.2004.08.004
Zhu, 2001, Understanding magnetic structures in permanent magnets via in situ Lorentz microscopy, interferometric and noninterferometric phase-reconstructions, J. Electron Microsc. (Tokyo), 50, 447, 10.1093/jmicro/50.6.447
Volkov, 2002, A new symmetrized solution for phase retrieval using the transport of intensity equation, Micron, 33, 411, 10.1016/S0968-4328(02)00017-3
Chapman, 1978, Direct determination of magnetic domain-wall profiles by differential phase-contrast electron-microscopy, Ultramicroscopy, 3, 203, 10.1016/S0304-3991(78)80027-8
Chapman, 1984, The investigation of magnetic domain-structures in thin foils by electron-microscopy, J. Phys. D-Appl. Phys., 17, 623, 10.1088/0022-3727/17/4/003
Matsumoto, 2016, Jointed magnetic skyrmion lattices at a small-angle grain boundary directly visualized by advanced electron microscopy, Sci. Rep., 6, 10.1038/srep35880
Kohno, 2022, Real-space visualization of intrinsic magnetic fields of an antiferromagnet, Nature, 602, 234, 10.1038/s41586-021-04254-z
Dekkers, 1974, Differential phase-contrast in ASTEM, Optik (Stuttg), 41, 452
Tonomura, 1980, Direct observation of fine-structure of magnetic domain-walls by electron holography, Phys. Rev. Lett., 44, 1430, 10.1103/PhysRevLett.44.1430
Tonomura, 1987, Applications of electron holography, Rev. Mod. Phys., 59, 639, 10.1103/RevModPhys.59.639
Aharonov, 1959, Significance of electromagnetic potentials in the quantum theory, Phys. Rev., 115, 485, 10.1103/PhysRev.115.485
Krajnak, 2016, Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast, Ultramicroscopy, 165, 42, 10.1016/j.ultramic.2016.03.006
Nguyen, 2022, Disentangling Magnetic and Grain Contrast in Polycrystalline FeGe Thin Films Using Four-Dimensional Lorentz Scanning Transmission Electron Microscopy, Phys. Rev. Appl., 17, 10.1103/PhysRevApplied.17.034066
Clark, 2018, Probing the limits of the rigid-intensity-shift model in differential-phase-contrast scanning transmission electron microscopy, Phys. Rev. A, 97, 10.1103/PhysRevA.97.043843
Boureau, 2021, High-sensitivity mapping of magnetic induction fields with nanometer-scale resolution: comparison of off-axis electron holography and pixelated differential phase contrast, J. Phys. D-Appl. Phys., 54
Almeida, 2020, Direct visualization of the magnetostructural phase transition in nanoscale FeRh thin films using differential phase contrast imaging, Phys. Rev. Mater., 4
Murakami, 2020, Magnetic-structure imaging in polycrystalline materials by specimen-tilt series averaged DPC STEM, Microscopy, 69, 312, 10.1093/jmicro/dfaa029
Wang, 2022, Extracting weak magnetic contrast from complex background contrast in plan-view FeGe thin films, Ultramicroscopy, 232
Kirkland, 1998
Spence, 1992
Mir, 2017, Characterisation of the Medipix3 detector for 60 and 80keV electrons, Ultramicroscopy, 182, 44, 10.1016/j.ultramic.2017.06.010
Ma, 2014, Strong coupling of the iron-quadrupole and anion-dipole polarizations in Ba(Fe1-xCox)(2)As-2, Phys. Rev. Lett., 112, 5, 10.1103/PhysRevLett.112.077001
Wu, 2004, Valence-electron distribution in MgB2 by accurate diffraction measurements and first-principles calculations, Phys. Rev. B, 69, 8, 10.1103/PhysRevB.69.064501
Wu, 2020, Mapping valence electron distributions with multipole density formalism using 4D-STEM, Ultramicroscopy, 219
Wu, 2013, Origin of phonon glass-electron crystal behavior in thermoelectric layered cobaltate, Adv. Funct. Mater., 23, 5728, 10.1002/adfm.201301098
Wang, 2021, Photoinduced anisotropic lattice dynamic response and domain formation in thermoelectric SnSe, Npj Quant. Mater., 6, 10.1038/s41535-021-00400-y
Duda, 1972, Use of Hough transformation to detect lines and curves in pictures, Commun. ACM, 15, 11, 10.1145/361237.361242
Atherton, 1999, Size invariant circle detection, Image Vis. Comput., 17, 795, 10.1016/S0262-8856(98)00160-7
Yuan, 2019, Lattice strain mapping using circular Hough transform for electron diffraction disk detection, Ultramicroscopy, 207
Dennis, 1999, A trust-region approach to nonlinear systems of equalities and inequalities, Siam J. Optim., 9, 291, 10.1137/S1052623494276208
Intel, Intel Math Kernel library. p. https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html#gs.nj640q.
Lau, 2005, Direct correlation of reversal rate dynamics to domain configurations in micron-sized permalloy elements, J. Appl. Phys., 97
Lau, 2006, Energy barrier to magnetic vortex nucleation, Appl. Phys. Lett., 88, 10.1063/1.2150272
Lau, 2007, Common reversal mechanisms and correlation between transient domain states and field sweep rate in patterned Permalloy structures, J. Appl. Phys., 102, 10.1063/1.2769779
Pekin, 2017, Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping, Ultramicroscopy, 176, 170, 10.1016/j.ultramic.2016.12.021
Savitzky, 2021, py4DSTEM: a software package for four-dimensional scanning transmission electron microscopy data analysis, Microsc. Microanal., 27, 712, 10.1017/S1431927621000477
Muller, 2012, Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy, Microsc. Microanal., 18, 995, 10.1017/S1431927612001274
Mahr, 2015, Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction, Ultramicroscopy, 158, 38, 10.1016/j.ultramic.2015.06.011
Wang, 2022, AutoDisk: automated diffraction processing and strain mapping in 4D-STEM, Ultramicroscopy, 236
Zeltmann, 2020, Patterned probes for high precision 4D-STEM bragg measurements, Ultramicroscopy, 209
Guzzinati, 2019, Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping, Appl. Phys. Lett., 114, 10.1063/1.5096245