Band alignment and band bending at α-Ga2O3/ZnO n-n isotype hetero-interface

Applied Physics Letters - Tập 115 Số 20 - 2019
Xuanhu Chen1, Yen‐Ting Chen1, Fangfang Ren2,1, S. L. Gu1, Hark Hoe Tan3, C. Jagadish3, Jiandong Ye2,1
1School of Electronic Science and Engineering, Nanjing University 1 , Nanjing 210023, China
2Research Institute of Shenzhen, Nanjing University 2 , Shenzhen 518000, China
3Department of Electronic Materials Engineering, Research School of Physics, The Australian National University 3 , Canberra, ACT 2601, Australia

Tóm tắt

Understanding the electronic structures at the interfaces of wide bandgap oxide heterostructures is crucial for the rational design of oxide-based optoelectronic devices with novel functionality and improved performance. In this work, the electronic band diagram at a ZnO/α-Ga2O3 n-n isotype heterojunction is investigated by depth-profile x-ray photoemission spectroscopy (XPS). The directly measured valence-band offset is −0.61 ± 0.1 eV and a type-I (straddling gap) band alignment is formed at the ZnO/α-Ga2O3 heterointerface. As probed by the depth profile of core-levels and VB-XPS, the formation of an interfacial layer is observed due to Ga and Zn interdiffusion, where charged interfacial states result in the downward and upward band-bending at the ZnO and α-Ga2O3 sides, respectively. The influence of band bending and band discontinuity at the interface is confirmed by the rectifying characteristics in the Au/α-Ga2O3/ZnO heterojunction with electron accumulation at its interface. Taking the thermionic-field emission and band-to-band tunneling mechanisms into account, the simulated transport properties agrees well with the reported I-V characteristics of Au/α-Ga2O3/ZnO avalanche photodiode, a further validation of the deduced band alignment of the heterostructure.

Từ khóa


Tài liệu tham khảo

2012, Appl. Phys. Lett., 100, 013504, 10.1063/1.3674287

2015, Appl. Phys. Express, 8, 055501, 10.7567/APEX.8.055501

2019, J. Semicond., 40, 012804, 10.1088/1674-4926/40/1/012804

2019, Photonics Res., 7, 381, 10.1364/PRJ.7.000381

2018, Semicond. Sci. Technol., 33, 113001, 10.1088/1361-6641/aadf78

2016, IEEE Electron Device Lett., 37, 212, 10.1109/LED.2015.2512279

2015, Nano Lett., 15, 3988, 10.1021/acs.nanolett.5b00906

2016, Sol. Energy Mater. Sol. Cells, 152, 65, 10.1016/j.solmat.2016.03.015

2017, ACS Appl. Mater. Interfaces, 9, 36997, 10.1021/acsami.7b09812

2016, Appl. Phys. Lett., 109, 102106, 10.1063/1.4962538

2018, Nanoscale Res. Lett., 13, 412, 10.1186/s11671-018-2832-7

2012, Nanoscale Res. Lett., 7, 562, 10.1186/1556-276X-7-562

2011, Chin. Phys. B, 20, 116101, 10.1088/1674-1056/20/11/116101

2017, Appl. Phys. Lett., 111, 162105, 10.1063/1.5003930

2016, Jpn. J. Appl. Phys., Part 1, 55, 1202A3, 10.7567/JJAP.55.1202A3

2016, Appl. Phys. Express, 9, 021101, 10.7567/APEX.9.021101

2019, APL Mater., 7, 022503, 10.1063/1.5051058

2018, Appl. Phys. Lett., 113, 212104, 10.1063/1.5054054

2018, Jpn. J. Appl. Phys., Part 1, 57, 080308, 10.7567/JJAP.57.080308

2013, ACS Appl. Mater. Interfaces, 5, 5875, 10.1021/am401696e

2015, Appl. Surf. Sci., 349, 368, 10.1016/j.apsusc.2015.04.225

1994, Appl. Surf. Sci., 74, 99, 10.1016/0169-4332(94)90104-X

2015, Phys. Rev. B, 92, 195306, 10.1103/PhysRevB.92.195306

2011, Energy Environ. Sci., 4, 3487, 10.1039/c1ee01292d

2003, Appl. Phys. Lett., 82, 2029, 10.1063/1.1564632

2012, Appl. Surf. Sci., 261, 830, 10.1016/j.apsusc.2012.08.112

2005, J. Phys. Chem. B, 109, 13572, 10.1021/jp051925+

2009, Electron. Mater. Lett., 5, 127, 10.3365/eml.2009.09.127

2010, J. Phys. Chem. Lett., 1, 354, 10.1021/jz900213p

1980, Phys. Rev. Lett., 44, 1620, 10.1103/PhysRevLett.44.1620

2007, Appl. Phys. Lett., 91, 162104, 10.1063/1.2800311

2009, Appl. Phys. Lett., 94, 022108, 10.1063/1.3072367

2011, Phys. Lett. A, 375, 1760, 10.1016/j.physleta.2011.03.021

2019, APL Mater., 7, 022512, 10.1063/1.5053867

2018, Phys. Status Solidi A, 215, 1800332, 10.1002/pssa.201800332

1982, Solid State Commun., 43, 163, 10.1016/0038-1098(82)90102-8

2018, J. Appl. Phys., 123, 055701, 10.1063/1.5000123

2017, Cryst. Growth Des., 17, 6071, 10.1021/acs.cgd.7b01159

2018, Phys. Rev. Appl., 10, 011003, 10.1103/PhysRevApplied.10.011003

2012, Appl. Phys. Lett., 101, 132106, 10.1063/1.4755770

2017, IEEE J. Electron Devices Soc., 5, 256, 10.1109/JEDS.2017.2706321

2016, CRC Handbook of Chemistry and Physics

1992, IEEE Trans. Electron Devices, 39, 331, 10.1109/16.121690

1989

2008, Thin Solid Films, 516, 1227, 10.1016/j.tsf.2007.06.003

2014, J. Phys. D, 47, 079601, 10.1088/0022-3727/47/7/079601

2018, Rep. Prog. Phys., 81, 056501, 10.1088/1361-6633/aaa978