Regional Cortical Surface Area in Adolescents: A Preliminary MRI Twin Study of Genetic and Environmental Contributions

Behavior Genetics - Tập 46 - Trang 205-216 - 2015
Xingshun Ma1,2, Lisa T. Eyler3,4, Xiaomei Hu1, Xiao Hou5, Wei Deng6, Xiaowei Zhang6, Yin Lin6, Wei Lei6, Mingli Li6, Line Kang2, Yongfeng Huang2, Na Wang2, Tian Qiu1, Xiao Li1, Qian He7, Yixiao Fu1, Huaqing Meng1, Tao Li6
1Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
2The Second Department of Neurology, The First Hospital of Yulin, Yulin, China
3University of California, San Diego, La Jolla, USA
4Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, USA
5Chongqing Medical and Pharmaceutical College, Chongqing, China
6Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
7Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Tóm tắt

Cortical surface area (CSA) has particular relevance for understanding development, behavior, and the connection between brain structure and function. Little is known about genetic and environmental determinants of CSA during development. We utilized bivariate twin methods to identify global and regionally specific genetic factors which influence CSA in a preliminary sample of typically-developing adolescents, with hypotheses based on findings in middle-aged adults. Similar to previous findings, we observed high heritability for total CSA. There was also significant evidence for genetic influences on regional CSA, particularly when these were not adjusted for total CSA, with highest heritability in frontal cortex and relatively fewer genetic contributions to medial temporal cortical structures. Adjustment for total CSA reduced regional CSA heritability dramatically, but a moderate influence of genetic factors remained in some regions. Both global and regionally-specific genetic factors influence regional CSA during adolescence.

Tài liệu tham khảo

Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny S, Bates T, Mehta P, Fox J (2011) OpenMx: an open source extended structural equation modeling framework. Psychometrika 76(2):306–317 Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194 Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980 Dominicus A, Skrondal A, Gjessing HK, Pedersen NL, Palmgren J (2006) Likelihood ratio tests in behavioral genetics: problems and solutions. Behav Genet 36(2):331–340 Eaves LJ, Last KA, Young PA, Martin NG (1978) Model-fitting approaches to the analysis of human behaviour. Heredity (Edinb) 41(3):249–320 Eyler LT, Prom-Wormley E, Panizzon MS, Kaup AR, Fennema-Notestine C, Neale MC, Jernigan TL, Fischl B, Franz CE, Lyons MJ, Grant M, Stevens A, Pacheco J, Perry ME, Schmitt JE, Seidman LJ, Thermenos HW, Tsuang MT, Chen CH, Thompson WK, Jak A, Dale AM, Kremen WS (2011) Genetic and environmental contributions to regional cortical surface area in humans: a magnetic resonance imaging twin study. Cereb Cortex 21(10):2313–2321 Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1313–1323 Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055 Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207 Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22 Giedd JN, Lenroot RK, Shaw P, Lalonde F, Celano M, White S, Tossell J, Addington A, Gogtay N (2008) Trajectories of anatomic brain development as a phenotype. Novartis Found Symp 289:101–112; discussion 112–108, 193-105 Kessler RC, Angermeyer M, Anthony JC, Demyttenaere RDEG, Demyttenaere K, Gasquet I, Gluzman GDEG, Gurej S, Haro O, Kawakami JM, Karam N, Levinson A, Medina Mora D, Oakley ME, Browne MA, Posada-Villa J, Stein J, Adley DJ, Tsang CH, Aguilar-Gaxiola S, Alonso J, Lee S, Heeringa S, Pennell BE, Berglund P, Gruber MJ, Petukhova M, Chatterji S, Ustun TB (2007) Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry 6(3):168–176 Kremen WS, Prom-Wormley E, Panizzon MS, Eyler LT, Fischl B, Neale MC, Franz CE, Lyons MJ, Pacheco J, Perry ME, Stevens A, Schmitt JE, Grant MD, Seidman LJ, Thermenos HW, Tsuang MT, Eisen SA, Dale AM, Fennema-Notestine C (2010) Genetic and environmental influences on the size of specific brain regions in midlife: the VETSA MRI study. Neuroimage 49(2):1213–1223 Lenroot RK, Schmitt JE, Ordaz SJ, Wallace GL, Neale MC, Lerch JP, Kendler KS, Evans AC, Giedd JN (2009) Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Hum Brain Mapp 30(1):163–174 Luna B, Sweeney JA (2001) Studies of brain and cognitive maturation through childhood and adolescence: a strategy for testing neurodevelopmental hypotheses. Schizophr Bull 27(3):443–455 Muhle R, Trentacoste SV, Rapin I (2004) The genetics of autism. Pediatrics 113(5):e472–e486 Neale MC, Cardon LR, Organization North Atlantic Treaty, Division Scientific Affairs (1992) Methodology for genetic studies of twins and families. Kluwer Academic Publishers, Boston Ostby Y, Tamnes CK, Fjell AM, Westlye LT, Due-Tonnessen P, Walhovd KB (2009) Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. J Neurosci 29(38):11772–11782 Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19(11):2728–2735 Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(12):947–957 Raznahan A, Shaw P, Lalonde F, Stockman M, Wallace GL, Greenstein D, Clasen L, Gogtay N, Giedd JN (2011) How does your cortex grow? J Neurosci 31(19):7174–7177 Rubenstein JL, Rakic P (1999) Genetic control of cortical development. Cereb Cortex 9(6):521–523 van Soelen IL, Brouwer RM, Peper JS, van Leeuwen M, Koenis MM, van Beijsterveldt TC, Swagerman SC, Kahn RS, Hulshoff Pol HE, Boomsma DI (2012a) Brain SCALE: brain structure and cognition: an adolescent longitudinal twin study into the genetic etiology of individual differences. Twin Res Hum Genet 15(3):453–467 van Soelen IL, Brouwer RM, van Baal GC, Schnack HG, Peper JS, Collins DL, Evans AC, Kahn RS, Boomsma DI, Hulshoff Pol HE (2012b) Genetic influences on thinning of the cerebral cortex during development. Neuroimage 59(4):3871–3880 Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, Duggirala R, Glahn DC (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53(3):1135–1146 Yaoxian G, Taisheng C (1993) The China-Wechsler Intelligence Scale for Children (C-WISC). Hunan Map Publishing Company, Changhsa Yang MJ, Tzeng CH, Tseng JY, Huang CY (2006) Determination of twin zygosity using a commercially available STR analysis of 15 unlinked loci and the gender-determining marker amelogenin—a preliminary report. Hum Reprod 21(8):2175–2179 Yoon U, Fahim C, Perusse D, Evans AC (2010) Lateralized genetic and environmental influences on human brain morphology of 8-year-old twins. Neuroimage 53(3):1117–1125