No effect of exogenous melatonin on development of cryopreserved metaphase II oocytes in mouse
Tóm tắt
This study was conducted to investigate effect of exogenous melatonin on the development of mouse mature oocytes after cryopreservation. First, mouse metaphase II (MII) oocytes were vitrified in the open-pulled straws (OPS). After warming, they were cultured for 1 h in M2 medium containing melatonin at different concentrations (0, 10−9, 10−7, 10−5, 10−3 mol/L). Then the oocytes were used to detect reactive oxygen species (ROS) and glutathione (GSH) levels (fluorescence microscopy), and the developmental potential after parthenogenetic activation. The experimental results showed that the ROS level and cleavage rate in 10−3 mol/L melatonin group was significantly lower than that in melatonin-free group (control). The GSH levels and blastocyst rates in all melatonin-treated groups were similar to that in control. Based on the above results, we detected the expression of gene Hsp90aa1, Hsf1, Hspa1b, Nrf2 and Bcl-x1 with qRT-PCR in oocytes treated with 10−7, or 10−3 mol/L melatonin and untreated control. After warming and culture for 1 h, the oocytes showed higher Hsp90aa1 expression in 10−7 mol/L melatonin-treated group than in the control (P < 0.05); the Hsf1, Hsp90aa1 and Bcl-x1 expression were significantly decreased in 10−3 mol/L melatonin-treated group when compared to the control. Based on the above results and previous research, we detected the development of vitrified-warmed oocytes treated with either 10−7 or 0 mol/L melatonin by in vitro fertilization. No difference was observed between them. Our results indicate that the supplementation of melatonin (10−9 to 10−3 mol/L) in culture medium and incubation for 1 h did not improve the subsequent developmental potential of vitrified-warmed mouse MII oocytes, even if there were alteration in gene expression.
Tài liệu tham khảo
Fujimoto VY, Bloom MS, Huddleston HG, Shelley WB, Ocque AJ, Browne RW. Correlations of follicular fluid oxidative stress biomarkers and enzyme activities with embryo morphology parameters during in vitro fertilization. Fertil Steril. 2011;96(6):1357–61. doi:http://dx.doi.org/10.1016/j.fertnstert.2011.09.032.
Goud AP, Goud PT, Diamond MP, Gonik B, Abu-Soud HM. Reactive oxygen species and oocyte aging: Role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic Biol Med. 2008;44(7):1295–304. doi:http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.014.
Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3(28):1–21.
Favetta LA, St John EJ, King WA, Betts DH. High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic Biol Med. 2007;42(8):1201–10. doi:http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.018.
Banerjee J, Maitra D, Diamond MP, Abu-Soud HM. Melatonin prevents hypochlorous acid-induced alterations in microtubule and chromosomal structure in metaphase-II mouse oocytes. J Pineal Res. 2012;53(2):122–8. doi:10.1111/j.1600-079X.2012.00977.x.
Khalil WA, Marei WFA, Khalid M. Protective effects of antioxidants on linoleic acid–treated bovine oocytes during maturation and subsequent embryo development. Theriogenology. 2013;80(2):161–8. doi:http://dx.doi.org/10.1016/j.theriogenology.2013.04.008.
Luberda Z. The role of glutathione in mammalian gametes. Reprod Biol. 2005;5(1):5–17.
Nakamura BN, Fielder TJ, Hoang YD, Lim J, McConnachie LA, Kavanagh TJ, et al. Lack of maternal glutamate cysteine ligase modifier subunit (Gclm) decreases oocyte glutathione concentrations and disrupts preimplantation development in mice. Endocrinology. 2011;152(7):2806–15.
Somfai T, Ozawa M, Noguchi J, Kaneko H, Kuriani Karja NW, Farhudin M, et al. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: Effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology. 2007;55(2):115–26.
De Leon PMM, Campos VF, Corcini CD, Santos ECS, Rambo G, Lucia Jr T, et al. Cryopreservation of immature equine oocytes, comparing a solid surface vitrification process with open pulled straws and the use of a synthetic ice blocker. Theriogenology. 2012;77(1):21–7. doi:http://dx.doi.org/10.1016/j.theriogenology.2011.07.008.
Naidu SD, Kostov RV, Dinkova-Kostova AT. Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends Pharmacol Sci. 2015;36(1):6–14.
Amin A, Gad A, Salilew‐Wondim D, Prastowo S, Held E, Hoelker M, et al. Bovine embryo survival under oxidative‐stress conditions is associated with activity of the NRF2‐mediated oxidative‐stress‐response pathway. Mol Reprod Dev. 2014;81(6):497–513.
Hartson SD, Matts RL. Approaches for defining the Hsp90-dependent proteome. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res. 2012;1823(3):656–67.
Metchat A, Åkerfelt M, Bierkamp C, Delsinne V, Sistonen L, Alexandre H, et al. Mammalian heat shock factor 1 is essential for oocyte meiosis and directly regulates Hsp90α expression. J Biol Chem. 2009;284(14):9521–8.
Audouard C, Le Masson F, Charry C, Li Z, Christians ES. Oocyte–Targeted Deletion Reveals That Hsp90b1 Is Needed for the Completion of First Mitosis in Mouse Zygotes. PLoS One. 2011;6(2):e17109.
Christians E, Davis A, Thomas S, Benjamin I. Embryonic development: maternal effect of Hsf1 on reproductive success. Nature. 2000;407(6805):693–4.
Le Masson F, Christians E. HSFs and regulation of Hsp70. 1 (Hspa1b) in oocytes and preimplantation embryos: new insights brought by transgenic and knockout mouse models. Cell Stress and Chaperones. 2011;16(3):275–85.
Jahromi ZK, Amidi F, Mugehe SMHN, Sobhani A, Mehrannia K, Abbasi M, et al. Expression of heat shock protein (HSP A1A) and MnSOD genes following vitrification of mouse MII oocytes with cryotop method. Yakhteh Med J. 2010;12(1):113–9.
Succu S, Bebbere D, Bogliolo L, Ariu F, Fois S, Leoni GG, et al. Vitrification of in vitro matured ovine oocytes affects in vitro pre‐implantation development and mRNA abundance. Mol Reprod Dev. 2008;75(3):538–46.
Reiter R. Tan D-x, Osuna C, Gitto E. Actions of melatonin in the reduction of oxidative stress. J Biomed Sci. 2000;7(6):444–58. doi:10.1007/BF02253360.
Siu AW, Maldonado M, Sanchez‐Hidalgo M, Tan DX, Reiter RJ. Protective effects of melatonin in experimental free radical‐related ocular diseases. J Pineal Res. 2006;40(2):101–9.
Reiter RJ. Melatonin: Lowering the high price of free radicals. News Physiol Sci. 2000;15:246–50.
Cruz MHC, Leal CLV, da Cruz JF, Tan D-X, Reiter RJ. Role of melatonin on production and preservation of gametes and embryos: a brief review. Anim Reprod Sci. 2014;145(3):150–60.
Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51(1):1–16. doi:10.1111/j.1600-079X.2011.00916.x.
Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J Pineal Res. 2013;54(3):245–57. doi:10.1111/jpi.12010.
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res. 2013;55(4):325–56.
Rodriguez-Osorio N, Kim IJ, Wang H, Kaya A, Memili E. Melatonin increases cleavage rate of porcine preimplantation embryos in vitro. J Pineal Res. 2007;43(3):283–8. doi:10.1111/j.1600-079X.2007.00475.x.
Zhang X, Zhu Z, Huang Z, Tan P, Ma RZ. Microsatellite genotyping for four expected inbred mouse strains from KM mice. J Gen Genom. 2007;34(3):214–22.
Wang L, Liu J, Zhou G-B, Hou Y-P, Li J-J, Zhu S-E. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures. Biol Reprod. 2011;85(5):884–94.
Whittingham D. Culture of mouse ova. J Reprod Fertil Suppl. 1971;14:7–21.
Vajta G, Kuwayama M, Holm P, Booth P, Jacobsen H, Greve T, et al. A new way to avoid cryoinjuries of mammalian ova and embryos: the OPS vitrification. Mol Reprod Dev. 1998;51(1):53–8.
Yan C-L, Fu X-W, Zhou G-B, Zhao X-M, Suo L, Zhu S-E. Mitochondrial behaviors in the vitrified mouse oocyte and its parthenogenetic embryo: effect of Taxol pretreatment and relationship to competence. Fertil Steril. 2010;93(3):959–66.
Wu GQ, Jia BY, Li JJ, Fu XW, Zhou GB, Hou YP, et al. L-carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs. Theriogenology. 2011;76(5):785–93. doi:http://dx.doi.org/10.1016/j.theriogenology.2011.04.011.
Quinn P, Kerin J, Warnes G. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril. 1985;44(4):493–8.
Carbone M, Tatone C. Alterations in the protein kinase C signaling activated by a parthenogenetic agent in oocytes from reproductively old mice. Mol Reprod Dev. 2009;76(2):122–31.
Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev. 1995;41(2):232–8.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.
Vajta G, Kuwayama M. Improving cryopreservation systems. Theriogenology. 2006;65(1):236–44.
Tamura H, Nakamura Y, Korkmaz A, Manchester LC, Tan D-X, Sugino N, et al. Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril. 2009;92(1):328–43. doi:http://dx.doi.org/10.1016/j.fertnstert.2008.05.016.
Nakano M, Kato Y, Tsunoda Y. Effect of melatonin treatment on the developmental potential of parthenogenetic and somatic cell nuclear-transferred porcine oocytes in vitro. Zygote. 2012;20(2):199–207.
Kang J-T, Koo O-J, Kwon D-K, Park H-J, Jang G, Kang S-K, et al. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res. 2009;46(1):22–8. doi:10.1111/j.1600-079X.2008.00602.x.
Shi J-M, Tian X-Z, Zhou G-B, Wang L, Gao C, Zhu S-E, et al. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J Pineal Res. 2009;47(4):318–23. doi:10.1111/j.1600-079X.2009.00717.x.
Hardeland R. Atioxidative protection by melatonin. Endocrine. 2005;27(2):119–30. doi:10.1385/ENDO:27:2:119.
León J, Acuña-Castroviejo D, Escames G, Tan D-X, Reiter RJ. Melatonin mitigates mitochondrial malfunction. J Pineal Res. 2005;38(1):1–9. doi:10.1111/j.1600-079X.2004.00181.x.
Korkmaz A, Rosales-Corral S, Reiter RJ. Gene regulation by melatonin linked to epigenetic phenomena. Gene. 2012;503(1):1–11. doi:10.1016/j.gene.2012.04.040.
Leung L, Kwong M, Hou S, Lee C, Chan JY. Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J Biol Chem. 2003;278(48):48021–9.
Ishizuka B, Kuribayashi Y, Murai K, Amemiya A, Itoh MT. The effect of melatonin on in vitro fertilization and embryo development in mice. J Pineal Res. 2000;28(1):48–51. doi:10.1034/j.1600-079x.2000.280107.x.
Wang F, Tian XZ, Zhang L, Tan DX, Reiter RJ, Liu GS. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res. 2013;55(3):267–74. doi:10.1111/jpi.12069.
Wang F, Tian X, Zhang L, Gao C, He C, Fu Y, et al. Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1. J Pineal Res. 2014;56(3):333–42. doi:10.1111/jpi.12126.
Manjunatha BM, Devaraj M, Gupta PSP, Ravindra JP, Nandi S. Effect of taurine and melatonin in the culture medium on buffalo in vitro embryo development. Reprod Domest Anim. 2009;44(1):12–6. doi:10.1111/j.1439-0531.2007.00982.x.
Kim MK, Park EA, Kim HJ, Choi WY, Cho JH, Lee WS, et al. Does supplementation of in-vitro culture medium with melatonin improve IVF outcome in PCOS? Reproductive Biomed Online. 2013;26(1):22–9. doi:10.1016/j.rbmo.2012.10.007.
Abecia JA, Forcada F, Zúñiga O. The effect of melatonin on the secretion of progesterone in sheep and on the development of ovine embryos in vitro. Vet Res Commun. 2002;26(2):151–8. doi:10.1023/A:1014099719034.
Berlinguer F, Leoni GG, Succu S, Spezzigu A, Madeddu M, Satta V, et al. Exogenous melatonin positively influences follicular dynamics, oocyte developmental competence and blastocyst output in a goat model. J Pineal Res. 2009;46(4):383–91. doi:10.1111/j.1600-079X.2009.00674.x.
Sampaio RV, Conceição S, Miranda MS, Sampaio Lde F, Ohashi OM. MT3 melatonin binding site, MT1 and MT2 melatonin receptors are present in oocyte, but only MT1 is present in bovine blastocyst produced in vitro. Reprod Biol Endocrinol. 2012;10:103.