Near-threshold photoionization of nickel clusters: Ionization potentials for Ni3 to Ni90

Journal of Chemical Physics - Tập 93 Số 1 - Trang 94-104 - 1990
Mark B. Knickelbein1, Shihe Yang1, S. J. Riley1
1Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

Tóm tắt

The threshold photoionization efficiency (PIE) curves for nickel clusters in the size range Ni3 to Ni90 have been measured by laser photoionization with detection by time-of-flight mass spectrometry. Both warm (≤298 K) and cold (≤77 K) clusters have been studied. The PIE curves for 298 K clusters display thermal tails, while these tails are smaller for cold clusters. Cluster ionization potentials (I.P.s) have been determined by two methods: the Watanabe procedure and linear extrapolation of the PIE curves. Dramatic dependence of I.P. on cluster size is found for clusters smaller than 11 atoms, while the I.P.s of larger clusters decrease relatively smoothly and nearly monotonically from 5.84 eV for Ni11 to 5.56 eV for Ni90. The I.P.s for clusters larger than Ni40 show the linear dependence on reciprocal radius (R−1) predicted by the conducting spherical drop model of small particle I.P.s, but do not fit the model quantitatively unless the limiting (R−1→ 0) work function is reduced by 0.46 eV from the bulk polycrystalline value. The differences between the thermal tails of the room temperature and 77 K PIE curves diminish with increasing cluster size, suggesting a reduced difference between neutral and ionic structures for larger clusters. In general, there is poor agreement between our experimental results and theoretically calculated I.P.s for small nickel clusters, with the exception of the recently reported tight-binding theory results of Pastor et al. [Chem. Phys. Lett. 148, 459 (1988)].

Từ khóa


Tài liệu tham khảo

1984, J. Phys. Chem., 88, 4497, 10.1021/j150664a011

1983, Chem. Phys. Lett., 99, 161, 10.1016/0009-2614(83)80551-X

1984, J. Chem. Phys., 81, 3846, 10.1063/1.448168

1986, Z. Phys. D, 3, 195, 10.1007/BF01384807

1985, Chem. Phys. Lett., 117, 365, 10.1016/0009-2614(85)85245-3

1984, J. Chem. Phys., 80, 1780, 10.1063/1.446935

1985, Phys. Rev. B, 32, 1366, 10.1103/PhysRevB.32.1366

1989, J. Chem. Phys., 90, 2848, 10.1063/1.455937

1989, J. Chem. Phys., 90, 2979, 10.1063/1.455899

1986, J. Chem. Phys., 84, 1863, 10.1063/1.450434

1989, Z. Phys. D, 13, 171, 10.1007/BF01398587

1988, Chem. Phys. Lett., 143, 251, 10.1016/0009-2614(88)87376-7

1988, J. Chem. Phys., 88, 5377, 10.1063/1.454575

1988, Faraday Discuss. Chem. Soc., 86, 197, 10.1039/DC9888600197

1985, J. Chem. Phys., 82, 3659, 10.1063/1.448901

1985, J. Chem. Phys., 83, 2882, 10.1063/1.449240

1985, J. Chem. Phys., 82, 5470, 10.1063/1.448581

1989, J. Phys. Chem., 93, 6823, 10.1021/j100355a048

1985, Phys. Rev. Lett., 54, 1494, 10.1103/PhysRevLett.54.1494

1985, J. Chem. Phys., 83, 2293, 10.1063/1.449321

1990, J. Chem. Phys., 92, 3813, 10.1063/1.457839

1983, J. Chem. Phys., 78, 1627, 10.1063/1.444961

1983, J. Chem. Phys., 78, 2866, 10.1063/1.445273

1983, J. Chem. Phys., 79, 5316, 10.1063/1.445694

1955, Rev. Sci. Instrum., 26, 1150, 10.1063/1.1715212

1988, J. Chem. Phys., 89, 780, 10.1063/1.455201

1977, J. Chem. Phys., 66, 3965, 10.1063/1.434448

1984, J. Chem. Phys., 81, 3148, 10.1063/1.448018

1980, Chem. Phys., 51, 31, 10.1016/0301-0104(80)80077-2

1983, J. Chem. Phys., 79, 2577, 10.1063/1.446169

1954, J. Chem. Phys., 22, 1564, 10.1063/1.1740459

1971, J. Chem. Phys., 54, 1814, 10.1063/1.1675089

1990, J. Chem. Phys., 92, 2110, 10.1063/1.458045

1981, Phys. Rev. Lett., 46, 749, 10.1103/PhysRevLett.46.749

1988, J. Chem. Phys., 88, 5076, 10.1063/1.454661

1988, Phys. Rev. B, 37, 6175, 10.1103/PhysRevB.37.6175

1988, Chem. Rev., 88, 369, 10.1021/cr00084a002

1970, Phys. Rev. B, 2, 1

1984, J. Chem. Phys., 80, 5400, 10.1063/1.446646

1979, Phys. Rev. Lett., 43, 165, 10.1103/PhysRevLett.43.165

1974, Surf. Sci., 42, 249, 10.1016/0039-6028(74)90015-6

1975, Chem. Phys. Lett., 36, 423, 10.1016/0009-2614(75)80272-7

1976, Chem. Phys., 13, 243, 10.1016/0301-0104(76)80007-9

1976, Phys. Rev. B, 13, 1396, 10.1103/PhysRevB.13.1396

1976, J. Chem. Phys., 64, 4046, 10.1063/1.432013

1979, J. Vac. Sci. Technol., 16, 531, 10.1116/1.570031

1980, J. Chem. Phys., 73, 4492, 10.1063/1.440687

1980, Int. J. Quantum. Chem., 18, 1187, 10.1002/qua.560180507

1982, Chem. Phys. Lett., 90, 291, 10.1016/0009-2614(82)83242-9

1986, J. Chem. Phys., 85, 2875, 10.1063/1.451047

1987, J. Chem. Phys., 86, 5082, 10.1063/1.452651

1978, J. Phys. Soc. Jpn., 45, 875, 10.1143/JPSJ.45.875

1988, Chem. Phys. Lett., 148, 459, 10.1016/0009-2614(88)87204-X

1931, Phys. Rev., 38, 45, 10.1103/PhysRev.38.45

1980, Phys. Rev. Lett., 45, 1284, 10.1103/PhysRevLett.45.1284