Rapid energy expenditure estimation for ankle assisted and inclined loaded walking
Tóm tắt
Estimating energy expenditure with indirect calorimetry requires expensive equipment and several minutes of data collection for each condition of interest. While several methods estimate energy expenditure using correlation to data from wearable sensors, such as heart rate monitors or accelerometers, their accuracy has not been evaluated for activity conditions or subjects not included in the correlation process. The goal of our study was to develop data-driven models to estimate energy expenditure at intervals of approximately one second and demonstrate their ability to predict energetic cost for new conditions and subjects. Model inputs were muscle activity and vertical ground reaction forces, which are measurable by wearable electromyography electrodes and pressure sensing insoles. We developed models that estimated energy expenditure while walking (1) with ankle exoskeleton assistance and (2) while carrying various loads and walking on inclines. Estimates were made each gait cycle or four second interval. We evaluated the performance of the models for three use cases. The first estimated energy expenditure (in Watts) during walking conditions for subjects with some subject specific training data available. The second estimated all conditions in the dataset for a new subject not included in the training data. The third estimated new conditions for a new subject. The mean absolute percent errors in estimated energy expenditure during assisted walking conditions were 4.4%, 8.0%, and 8.1% for the three use cases, respectively. The average errors in energy expenditure estimation during inclined and loaded walking conditions were 6.1%, 9.7%, and 11.7% for the three use cases. For models not using subject-specific data, we evaluated the ability to order the magnitude of energy expenditure across conditions. The average percentage of correctly ordered conditions was 63% for assisted walking and 87% for incline and loaded walking. We have determined the accuracy of estimating energy expenditure with data-driven models that rely on ground reaction forces and muscle activity for three use cases. For experimental use cases where the accuracy of a data-driven model is sufficient and similar training data is available, standard indirect calorimetry could be replaced. The models, code, and datasets are provided for reproduction and extension of our results.
Tài liệu tham khảo
Lauer EA, Houtenville AJ. Annual Disability Statistics Compendium: 2016. Durham, NH: University of New Hampshire, Institute on Disability. 2017. https://disabilitycompendium.org/sites/default/files/user-uploads/2016٪20Annual٪20Disability٪20Statistics٪20Compendium.pdf.
Torburn L, Powers CM, Guiterrez R, Perry J. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. J Rehabil Res Dev. 1995; 32:111–9.
Brouwer B, Parvataneni K, Olney SJ. A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke. Clin Biomech. 2009; 24(9):729–34.
Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL, Atkeson CG, Collins SH. Human-in-the-loop optimization of exoskeleton assistance during walking. Science. 2017; 356(6344):1280–4.
Felt W, Selinger JC, Donelan MJ, Remy DC. Body-in-the-loop: Optimizing device parameters using measures of instantaneous energetic cost. PLoS ONE. 2015; 10(8).
Kim M, Ding Y, Malcolm P, Speeckaert J, Siviy CJ, Walsh CJ, Kuindersma S. Human-in-the-loop Bayesian optimization of wearable device parameters. PLoS ONE. 2017; 12(9):1–15.
Ding Y, Kim M, Kuindersma S, Walsh CJ. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking. Sci Robot. 2018; 3(15):eaar5438.
Holdy KE. Monitoring energy metabolism with indirect calorimetry: Instruments, interpretation, and clinical application. Nutr Clin Pract. 2004; 19(5):447–54.
Selinger JC, Donelan MJ. Estimating instantaneous energetic cost during non-steady-state gait. J Appl Physiol. 2014; 117(11):1406–15.
Krustrup P, Jones AM, Wilkerson DP, Calbet JA, Bangsbo J. Muscular and pulmonary O 2 uptake kinetics during moderate-and high-intensity sub-maximal knee-extensor exercise in humans. J Physiol. 2009; 587(8):1843–56.
Poole DC. Oxygen’s double-edged sword: Balancing muscle O 2 supply and use during exercise. J Physiol. 2011; 589(3):457–8.
Van der Walt W, Wyndham C. An equation for prediction of energy expenditure of walking and running. J Appl Physiol. 1973; 34(5):559–63.
Pandolf K, Haisman M, Goldman R. Metabolic energy expenditure and terrain coefficients for walking on snow. Ergonomics. 1976; 19(6):683–90.
Duggan A, Haisman M. Prediction of the metabolic cost of walking with and without loads. Ergonomics. 1992; 35(4):417–26.
Donelan JM, Kram R, Kuo AD. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J Exp Biol. 2002; 205(23):3717–27.
Kuo AD. Energetics of actively powered locomotion using the simplest walking model. J Biomech Eng. 2002; 124(1):113–20.
Faraji S, Wu AR, Ijspeert AJ. A simple model of mechanical effects to estimate metabolic cost of human walking. Sci Rep. 2018; 8(1):10998.
Umberger BR, Gerritsen KG, Martin PE. A model of human muscle energy expenditure. Comput Methods Biomech Biomed Eng. 2003; 6(2):99–111.
Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007; 54(11):1940–50.
Uchida TK, Seth A, Pouya S, Dembia CL, Hicks JL, Delp SL. Simulating ideal assistive devices to reduce the metabolic cost of running. PLoS ONE. 2016; 11(9):1–19.
Dembia CL, Silder A, Uchida TK, Hicks JL, Delp SL. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads. PloS ONE. 2017; 12(7):1–25.
Montoye HJ, Washburn R, Servais S, Ertl A, Webster JG, Nagle FJ. Estimation of energy expenditure by a portable accelerometer. Med Sci Sports Exerc. 1983; 15(5):403–7.
Swartz AM, Strath SJ, Bassett DR, O’brien WL, King GA, Ainsworth BE. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med Sci Sports Exerc. 2000; 32(9):450–6.
Crouter SE, Churilla JR, Bassett DR. Estimating energy expenditure using accelerometers. Eur J Appl Physiol. 2006; 98(6):601–12.
Heil DP. Predicting activity energy expenditure using the Actical activity monitor. Res Q Exerc Sport. 2006; 77(1):64–80.
Shcherbina A, Mattsson CM, Waggott D, Salisbury H, Christle JW, Hastie T, Wheeler MT, Ashley EA. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J Personalized Med. 2017; 7(2):3.
Ceesay SM, Prentice AM, Day KC, Murgatroyd PR, Goldberg GR, Scott W, Spurr G. The use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetry. Br J Nutr. 1989; 61(2):175–86.
Brage S, Brage N, Franks PW, Ekelund U, Wong M-Y, Andersen LB, Froberg K, Wareham NJ. Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J Appl Physiol. 2004; 96(1):343–51.
Montgomery PG, Green DJ, Etxebarria N, Pyne DB, Saunders PU, Minahan CL. Validation of heart rate monitor-based predictions of oxygen uptake and energy expenditure. J Strength Cond Res. 2009; 23(5):1489–95.
Wakeling JM, Blake OM, Wong I, Rana M, Lee SS. Movement mechanics as a determinate of muscle structure, recruitment and coordination. Phil Trans R Soc London Biol Sci. 2011; 366(1570):1554–64.
Silder A, Besier T, Delp SL. Predicting the metabolic cost of incline walking from muscle activity and walking mechanics. J Biomech. 2012; 45(10):1842–9.
Blake OM, Wakeling JM. Estimating changes in metabolic power from EMG. SpringerPlus. 2013; 2(1):229.
Eston RG, Rowlands AV, Ingledew DK. Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. J Appl Physiol. 1998; 84(1):362–71.
Brage S, Brage N, Franks P, Ekelund U, Wareham N. Reliability and validity of the combined heart rate and movement sensor actiheart. Eur J Clin Nutr. 2005; 59(4):561–70.
Ingraham KA, Ferris DP, Remy CD. Evaluating physiological signal salience for estimating metabolic energy cost from wearable sensors. J Appl Physiol. 2019; 126(3):717–29.
Vyas N, Farringdon J, Andre D, Stivoric JI. Machine learning and sensor fusion for estimating continuous energy expenditure. AI Mag. 2012; 33(2):55–66.
Jackson RW, Collins SH. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. J Appl Physiol. 2015; 119(5):541–57.
Silder A, Delp SL, Besier T. Men and women adopt similar walking mechanics and muscle activation patterns during load carriage. J Biomech. 2013; 46(14):2522–8.
Tao W, Liu T, Zheng R, Feng H. Gait analysis using wearable sensors. Sensors. 2012; 12(2):2255–83.
Brockway J. Derivation of formulae used to calculate energy expenditure in man. Hum Nutr Clin Nutr. 1987; 41(6):463–71.
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014; 15(1):1929–58.
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997; 9(8):1735–80.
Koch M, Lunde L-K, Ernst M, Knardahl S, Veiersted KB. Validity and reliability of pressure-measurement insoles for vertical ground reaction force assessment in field situations. Appl Ergon. 2016; 53:44–51.
Sim T, Kwon H, Oh SE, Joo S-B, Choi A, Heo HM, Kim K, Mun JH. Predicting complete ground reaction forces and moments during gait with insole plantar pressure information using a wavelet neural network. J Biomech Eng. 2015; 137(9):091001.
Slade P, Troutman R, Kochenderfer MJ, Collins SH, Delp SL. Energy expenditure estimation project repository. https://github.com/pslade2/EnergyExpenditureEstimation. Accessed 19 July 2018.