Towards a typology of risk preference: Four risk profiles describe two-thirds of individuals in a large sample of the U.S. population
Tóm tắt
It has been a longstanding goal of the behavioral sciences to measure and model people’s risk preferences. In this article, we adopt a novel theoretical perspective of doing so and test to what extent specific types of individuals share similar risk profiles (i.e., configurations of multidimensional risk preferences). To this end, we analyzed data of a U.S. sample (N = 3,123) in a comprehensive and rigorous way, resulting in a twofold contribution. First, based on data from the Domain-Specific Risk-Taking scale (DOSPERT) and using a cross-validation procedure, we established a multidimensional trait space including general and domain-specific dimensions of risk preference. Second, we employed model-based cluster analyses in this multidimensional trait space, finding that 66% of participants can be described well with four basic risk profiles. In sum, the typological perspective proposed in this article has important implications for current theories of risk preference and the measurement of individual differences therein.
Tài liệu tham khảo
Appelt, K. C., Milch, K. F., Handgraaf, M. J., & Weber, E. U. (2011). The decision making individual differences inventory and guidelines for the study of individual differences in judgment and decision-making research. Judgment and Decision Making, 6(3), 252–262.
Arslan, R. C., Brümmer, M., Dohmen, T., Drewelies, J., Hertwig, R., & Wagner, G. G. (2020). How people know their risk preference. Scientific Reports, 10(1), 15365.
Asendorpf, J. B., & van Aken, M. A. G. (1999). Resilient, overcontrolled, and undercontrolled personality prototypes in childhood: Replicability, predictive power, and the trait-type issue. Journal of Personality and Social Psychology, 77(4), 815–832.
Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk. Econometrica, 22(1), 23–36. Original work published 1783.
Blais, A.-R., & Weber, E. U. (2006). A domain-specific risk-taking (DOSPERT) scale for adult populations. Judgment and Decision Making, 1(1), 33–47.
Block, J., & Haan, N. (1971). Lives through time. Bancroft Books.
Costa, P. T., & MacCrae, R. R. (1992). Revised NEO personality inventory (NEO PI-R) and NEO five-factor inventory (NEO-FFI): Professional manual. Psychological Assessment Resources, Incorporated.
Deary, I. J. (2012). Intelligence. Annual Review of Psychology, 63(1), 453–482.
Dohmen, T., Falk, A., Huffman, D., Sunde, U., Schupp, J., & Wagner, G. G. (2011). Individual risk attitudes: Measurement, determinants, and behavioral consequences. Journal of the European Economic Association, 9(3), 522–550.
Falk, A., Becker, A., Dohmen, T. J., Huffman, D., & Sunde, U. (2016). The Preference Survey Module: A validated instrument for measuring risk, time, and social preferences. Institute for the Study of Labor, Bonn. Discussion Paper No. 9674.
Frey, R., Pedroni, A., Mata, R., Rieskamp, J., & Hertwig, R. (2017). Risk preference shares the psychometric structure of major psychological traits. Science Advances, 3, e1701381.
Frey, R., Richter, D., Schupp, J., Hertwig, R., & Mata, R. (2021). Identifying robust correlates of risk preference: A systematic approach using specification curve analysis. Journal of Personality and Social Psychology, 120(2), 538–557.
Gerlach, M., Farb, B., Revelle, W., & Amaral, L. A. N. (2018). A robust data-driven approach identifies four personality types across four large data sets. Nature Human Behaviour, 2(10), 735–742.
Goldberg, L. R. (1990). An alternative “description of personality”: The big-five factor structure. Journal of Personality and Social Psychology, 59(6), 1216.
Highhouse, S., Nye, C. D., Zhang, D. C., & Rada, T. B. (2016). Structure of the DOSPERT: Is there evidence for a general risk factor? Journal of Behavioral Decision Making.
Holzinger, K. J., & Swineford, F. (1937). The bi-factor method. Psychometrika, 2(1), 41–54.
Jennrich, R. I., & Bentler, P. M. (2011). Exploratory bi-factor analysis. Psychometrika, 76(4), 537–549.
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.
Lichtenstein, S., & Slovic, P. (Eds.). (2006). The construction of preference. Cambridge University Press.
Oberski, D. (2016). Mixture models: Latent profile and latent class analysis. In J. Robertson & M. Kaptein (Eds.), Modern Statistical Methods for HCI (pp. 275–287). Springer International Publishing.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
Robins, R. W., John, O. P., Caspi, A., Moffitt, T. E., & Stouthamer-Loeber, M. (1996). Resilient, overcontrolled, and undercontrolled boys: Three replicable personality types. Journal of Personality and Social Psychology, 70(1), 157–171.
Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society: Series B (methodological), 13(2), 238–241.
Steiner, M. D., Seitz, F., & Frey, R. (2021). Through the window of my mind: Mapping information integration and the cognitive representations underlying self-reported risk preference. Decision, 8(2), 97–122.
Stigler, G. J., & Becker, G. S. (1977). De gustibus non est disputandum. The American Economic Review, 67(2), 76–90.
Weber, E. U. (1999). Who’s afraid of a little risk? New evidence for general risk aversion. In J. Shanteau, B. A. Mellers, & D. A. Schum (Eds.), Decision Science and Technology (pp. 53–64). Springer US.
Weber, E. U., & Milliman, R. A. (1997). Perceived risk attitudes: Relating risk perception to risky choice. Management Science, 43(2), 123–144.
Weber, E. U., Blais, A. R., & Betz, N. E. (2002). A domain-specific risk-attitude scale: Measuring risk perceptions and risk behaviors. Journal of Behavioral Decision Making, 15(4), 263–290.
Zhang, D. C., Highhouse, S., & Nye, C. D. (2018). Development and validation of the General Risk Propensity Scale (GRiPS). Journal of Behavioral Decision Making.