Fourier transform ion cyclotron resonance studies of H2 chemisorption on niobium cluster cations

Journal of Chemical Physics - Tập 88 Số 8 - Trang 5215-5224 - 1988
J. L. Elkind1, F. D. Weiss1, J. M. Alford1, R. T. Laaksonen1, R. E. Smalley1
1Rice Quantum Institute and Department of Chemistry, Rice University, Houston, Texas 77251

Tóm tắt

Reaction rates and saturation values were determined for H2 dissociative chemisorption on positive niobium cluster ions in an FT-ICR apparatus. Clusters with 8,10,12, and 16 atoms were found to be particularly unreactive, in remarkable agreement with the reactivity patterns observed previously for neutral niobium clusters. Saturation coverage for most clusters was found to occur near a hydrogen/niobium ratio of 1.3, although some clusters (8–12,16, and 19) reached effectively inert compositions at considerably lower coverages. Several examples were found of clusters having two isomeric forms with different reactivities. One form of Nb+19 was found to readily react with H2, whereas a second form representing one-third of the original sample of 19 atom clusters was completely inert to H2 chemisorption under the same FT-ICR conditions. The geometrical shape of these niobium clusters must therefore have a critical effect on reactivity.

Từ khóa


Tài liệu tham khảo

1986, J. Phys. Chem., 90, 4480, 10.1021/j100410a004

1985, J. Chem. Phys., 83, 2293, 10.1063/1.449321

1986, J. Chem. Phys., 84, 4074, 10.1063/1.450069

1985, Chem. Phys. Lett., 121, 33, 10.1016/0009-2614(85)87149-9

1986, J. Chem. Phys., 85, 7434, 10.1063/1.451332

1985, J. Chem. Phys., 83, 4273, 10.1063/1.449090

1986, J. Chem. Phys., 85, 1681, 10.1063/1.451838

1986, Int. J. Mass. Spectrom. Ion Phys., 72, 33, 10.1016/0168-1176(86)85032-7

1981, Int. J. Mass. Spectrom. Ion Phys., 20, 99

1986, Rev. Mod. Phys., 58, 233, 10.1103/RevModPhys.58.233

1987, J. Phys. Chem., 91, 2801, 10.1021/j100295a031

1974, Surf. Sci., 45, 61, 10.1016/0039-6028(74)90155-1

1985, J. Chem. Phys., 82, 5470, 10.1063/1.448581

1905, Ann. Chim. Phys., 5, 245

1986, J. Chem. Phys., 85, 4747, 10.1063/1.451753

1985, J. Chem. Phys., 82, 590, 10.1063/1.448732

1987, Chem. Phys. Lett., 135, 223, 10.1016/0009-2614(87)85146-1

1988, Adv. Chem. Phys., 70, 211

1986, J. Chem. Phys., 85, 1697, 10.1063/1.451214

1985, Phys. Rev. Lett., 54, 1494, 10.1103/PhysRevLett.54.1494

1985, J. Chem. Phys., 83, 2882, 10.1063/1.449240

1985, J. Chem. Phys., 82, 3659, 10.1063/1.448901

1987, J. Phys. Chem., 91, 2671, 10.1021/j100294a041

1978, Top. Appl. Phys., 29, 11, 10.1007/3-540-08883-0_18

1986, Z. Phys. D, 3, 9

1987, J. Phys. Chem., 91, 3141, 10.1021/j100296a009

1987, Chem. Phys. Lett., 135, 223, 10.1016/0009-2614(87)85146-1

1987, Anal. Chem., 59, 449, 10.1021/ac00130a016

1985, J. Am. Chem. Soc., 107, 7893, 10.1021/ja00312a015