Phylogenetic Classification and the Universal Tree

American Association for the Advancement of Science (AAAS) - Tập 284 Số 5423 - Trang 2124-2128 - 1999
W. Ford Doolittle1
1Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada. E-mail: [email protected]

Tóm tắt

From comparative analyses of the nucleotide sequences of genes encoding ribosomal RNAs and several proteins, molecular phylogeneticists have constructed a “universal tree of life,” taking it as the basis for a “natural” hierarchical classification of all living things. Although confidence in some of the tree's early branches has recently been shaken, new approaches could still resolve many methodological uncertainties. More challenging is evidence that most archaeal and bacterial genomes (and the inferred ancestral eukaryotic nuclear genome) contain genes from multiple sources. If “chimerism” or “lateral gene transfer” cannot be dismissed as trivial in extent or limited to special categories of genes, then no hierarchical universal classification can be taken as natural. Molecular phylogeneticists will have failed to find the “true tree,” not because their methods are inadequate or because they have chosen the wrong genes, but because the history of life cannot properly be represented as a tree. However, taxonomies based on molecular sequences will remain indispensable, and understanding of the evolutionary process will ultimately be enriched, not impoverished.

Từ khóa


Tài liệu tham khảo

E. Mayr The Growth of Biological Thought (Belknap Press Cambridge MA 1982).

A. L. Panchen Classification Evolution and the Nature of Biology (Cambridge Univ. Press Cambridge 1992)

M. T. Ghiselin Metaphysics and the Origin of Species (State Univ. of New York Press Albany NY 1997).

C. Darwin The Origin of Species by Means of Natural Selection (Murray London 1859).

E. Zuckerkandl and L. Pauling in Evolving Genes and Proteins V. Bryson and H. J. Vogel Eds. (Academic Press New York 1965) pp. 97–166; J. Theor. Biol. 8 357 (1965).

10.1073/pnas.87.12.4576

Doolittle W. F., Brown J. R., ibid. 91, 6721 (1994);

; R. F. Doolittle ibid. 92 2421 (1995);

10.1126/science.276.5313.734

10.1126/science.202030

10.1128/mr.51.2.221-271.1987

10.1146/annurev.biochem.66.1.679

Gogarten P. J., et al., Proc. Natl. Acad. Sci. U.S.A. 86, 6661 (1989);

; N. Iwabe K. Kuma M. Hasegawa S. Osawa T. Miyata ibid. p. 9355; J. R. Brown and W. F. Doolittle ibid. 92 2441 (1995); S. L. Baldauf J. D. Palmer W. F. Doolittle ibid. 93 7749 (1996);

Lawson F. S., Charlebois R. L., Dillon J. A., Mol. Biol. Evol. 13, 970 (1996);

. Organisms in all major groups bear genes encoding elongation factors EF-1α (EF-Tu) and EF-2 (bacterial EF-G). These homologous (more precisely paralogous) genes thus must be products of a gene duplication that had already occurred before the time of the last common ancestor of all organisms alive today. A tree made of EF-1α and EF-2 sequences should comprise two subtrees (one for each of these paralogs) each of which (barring LGT or artifacts) should have the topology of the true universal organismal tree. The point at which each subtree attaches to the other will be its root and will correspond to the last common organismal ancestor. Neither subtree is rootable without the other. Because rRNA genes all seem to be orthologous (derived from a single ancestral gene in the last common ancestor) such a rooting is not possible with rRNA sequences alone.

M. J. Kates D. J. Kushner A. T. Matheson Eds. The Biochemistry of Archaea (Archaeobacteria) (Elsevier Science Amsterdam 1993)

W. F. Doolittle in Evolution of Microbial Life D. M. Roberts P. Sharp G. Alderson M. Collins Eds. (Cambridge Univ. Press Cambridge 1996) pp. 1-21.

10.1016/S0092-8674(00)80284-6

; D. E. Edgell and W. F. Doolittle ibid. p. 995; J. N. Reeve K. Sandman C. J. Daniels ibid. p. 999; P. P. Dennis ibid. p. 1007;

Soppa J., Mol. Microbiol. 31, 1295 (1997).

Philippe H., Curr. Opin. Genet. Dev. 8, 616 (1998);

; H. Phillippe and A. Adoutte in Evolutionary Relationships Among Protozoa G. H. Coombs K. Vickerman M. A. Sleigh A. Warren Eds. (Systematics Association London 1998) pp. 25–26;

10.1093/oxfordjournals.molbev.a026105

Prominent among sources of error or uncertainty in establishing branching patterns are mutational saturation “long-branch attraction ” and “among-site rate variation.” Mutationally saturated sequences are maximally diverged so that further changes are as likely to make them more similar as they are to make them more different and tree topology is based on noise. Long-branch attraction [

10.2307/2412923

] occurs when rates of sequence change differ substantially between taxa (even without saturation). Lineages with higher rates of sequence change artifactually associate with each other and with out-groups except with maximum likelihood methods. Even with these methods [

Yang Z., J. Mol. Evol. 42, 294 (1996);

; Trends Ecol. Evol. 11 367 (1996)] long-branch attraction occurs when there is a substantial rate variation among different sites in a gene.

10.1073/pnas.96.2.580

Stiller J. W., Duffield E. C., Hall B. D., ibid. 95, 11769 (1998).

P. J. Gogarten E. Hilario L. Olenzenski in Evolution of Microbial Life D. M. Roberts P. Sharp G. Alderson M. Collins Eds. (Cambridge Univ. Press Cambridge 1996) pp. 267–292.

Martin W., BioEssays 21, 99 (1999).

Cavalier-Smith T., Nature 326, 332 (1987);

; Biol. Rev. Camb. Philos. Soc. 73 203 (1998).

Vossbrinck C. R., et al., Nature 326, 411 (1987);

10.1126/science.2911720

Leipe D. D., Gunderson J. H., Nerad T. A., Sogin M. L., Mol. Biochem. Parasitol. 59, 41 (1993).

Embley T. M., Hirt R. P., Curr. Opin. Genet. Dev. 8, 629 (1998);

Roger A. J., Sandblom O., Doolittle W. F., Philippe H., Mol. Biol. Evol. 16, 218 (1999);

Keeling P. J., McFadden G. I., Trends Microbiol. 6, 19 (1998).

Miyamoto M. M., Fitch W. M., Mol. Biol. Evol. 12, 513 (1995).

Gray M. W., Burger G., Lang B. F., Science 283, 1476 (1999).

Brown J. R., Doolittle W. F., Microbiol. Mol. Biol. Rev. 61, 456 (1997);

10.1073/pnas.94.24.13028

Ragan M., Gaasterland T., J. Microb. Comp. Genomics 3, 219 (1998);

10.1073/pnas.95.11.6239

10.1016/S0168-9525(98)01494-2

10.1038/32096

10.1073/pnas.95.16.9413

10.1038/37052

Doolittle W. F., Logsdon J. M., Curr. Biol. 8, R209 (1998);

Ibba M., Bono J. L., Rosa P. A., Soll D., Proc. Natl. Acad. Sci. U.S.A. 94, 14383 (1997).

10.1073/pnas.96.7.3801

Hilario E., Gogarten J. P., Biosystems 31, 111 (1993).

Sonea S., Paniset M., Rev. Can. Biol. 35, 103 (1976);

; D. C. Reanney in Aspects of Genetic Action and Evolution suppl. 8 of International Review of Cytology G. H. Bourne J. F. Danielli K. W. Jeon Eds. (Academic Press New York 1978) pp. 1–67.

Cermakian N., et al., J. Mol. Evol. 46, 671 (1997).

S. A. Baldauf and W. F. Doolittle in preparation.

D. M. O'Neil

Baron L., Sypherd P., J. Bacteriol. 99, 242 (1969).

Doolittle R. F., Handy J. F., Curr. Opin. Genet. Dev. 8, 630 (1998).

Nomura M., Proc. Natl. Acad. Sci. U.S.A. 96, 1820 (1999).

___, Traub P., Bechmann H., Nature 219, 793 (1968).

10.1126/science.6163215

Asai T., Zaprojets D., Squires C., Squires C. L., Proc. Natl. Acad. Sci. U.S.A. 96, 1971 (1999).

Gupta R. S., Microbiol. Mol. Biol. Rev. 62, 1435 (1998).

Brown J. R., Zhang J., Hodgson J. E., Curr. Biol. 8, R365 (1998).

Ueda K., Kido Y., Yoshida T., Kataoka M., J. Bacteriol. 181, 78 (1999).

Woese C. R., Proc. Natl. Acad. Sci. U.S.A. 95, 6854 (1998).

J. Xiong K. Inoue C. C. Bauer ibid. p. 14851.

10.1016/S0168-9525(98)01553-4

I thank J. Logsdon A. Roger D. Faguy O. Feeley and Y. Inagaki for critical discussions and the Medical Research Council of Canada and the Canadian Institute for Advanced Research for support. I am indebted to J. P. Gogarten and W. Martin for persuading me of the importance of LGT.