Nuclear Accumulation of Histone Deacetylase 4 (HDAC4) Exerts Neurotoxicity in Models of Parkinson’s Disease

Molecular Neurobiology - Tập 54 - Trang 6970-6983 - 2016
Qimei Wu1, Xiaoyu Yang1, Lei Zhang1, Yu Zhang1, Linyin Feng1
1CAS Key Laboratory of Receptor Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, People’s Republic of China

Tóm tắt

Histone deacetylase 4 (HDAC4) is a class II HDAC which is highly expressed in the brain. Previous reports have shown that HDAC4 is essential for normal brain physiology and its deregulation leads to several neurodegenerative disorders. However, it remains unclear whether dysregulation of HDAC4 is specifically involved in the development of Parkinson’s disease. In this study, we demonstrate that intracellular trafficking of HDAC4 is important in regulating dopaminergic cell death. While HDAC4 normally localizes to the cytoplasm, nuclear accumulation of HDAC4 was observed in dopaminergic neurons overexpressing A53T mutant α-synuclein treated with MPP+/MPTP in vitro and in vivo. Nuclear-localized HDAC4 repressed cAMP response element-binding protein (CREB) and myocyte enhancer factor 2A (MEF2A), altered neuronal gene expression, and promoted neuronal apoptosis. Furthermore, cytoplasm-to-nucleus shuttling of HDAC4 was determined by its phosphorylation status, which was regulated by PP2A and PKCε. Treatment with PKCε-specific activators, DCP-LA or Bryostatin 1, provided neuroprotection against MPP+ toxicity in a dose-dependent manner. In summary, our research illustrated that intracellular trafficking of HDAC4 contributes to the vulnerability of cells expressing pathogenic α-synuclein mutants in response to oxidative stress and compounds which maintain cytoplasmic localization of HDAC4 such as PKCε activators that may serve as therapeutic agents for Parkinson’s disease.

Tài liệu tham khảo

Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909 Schapira AH (2009) Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol Sci 30(1):41–47. doi:10.1016/j.tips.2008.10.005 Sando R 3rd, Gounko N, Pieraut S, Liao L, Yates J 3rd, Maximov A (2012) HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell 151(4):821–834. doi:10.1016/j.cell.2012.09.037 Taniguchi M, Carreira MB, Smith LN, Zirlin BC, Neve RL, Cowan CW (2012) Histone deacetylase 5 limits cocaine reward through cAMP-induced nuclear import. Neuron 73(1):108–120. doi:10.1016/j.neuron.2011.10.032 Mielcarek M, Zielonka D, Carnemolla A, Marcinkowski JT, Guidez F (2015) HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements. Front Cell Neurosci 9:42. doi:10.3389/fncel.2015.00042 Fitzsimons HL (2015) The class IIa histone deacetylase HDAC4 and neuronal function: nuclear nuisance and cytoplasmic stalwart? Neurobiol Learn Mem 123:149–158. doi:10.1016/j.nlm.2015.06.006 Bertos NR, Wang AH, Yang XJ (2001) Class II histone deacetylases: structure, function, and regulation. Biochemistry and cell biology = Biochimie et biologie cellulaire 79(3):243–252 Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42. doi:10.1038/nrg2485 McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408(6808):106–111. doi:10.1038/35040593 Wang AH, Kruhlak MJ, Wu J, Bertos NR, Vezmar M, Posner BI, Bazett-Jones DP, Yang XJ (2000) Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol 20(18):6904–6912 Mathias RA, Guise AJ, Cristea IM (2015) Post-translational modifications regulate class IIa histone deacetylase (HDAC) function in health and disease. Molecular & cellular proteomics : MCP 14(3):456–470. doi:10.1074/mcp.O114.046565 Backs J, Worst BC, Lehmann LH, Patrick DM, Jebessa Z, Kreusser MM, Sun Q, Chen L et al (2011) Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol 195(3):403–415. doi:10.1083/jcb.201105063 Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116(7):1853–1864. doi:10.1172/JCI27438 Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM et al (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145(4):607–621. doi:10.1016/j.cell.2011.03.043 Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24(19):8374–8385. doi:10.1128/mcb.24.19.8374-8385.2004 Chen B, Cepko CL (2009) HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323(5911):256–259. doi:10.1126/science.1166226 Li J, Chen J, Ricupero CL, Hart RP, Schwartz MS, Kusnecov A, Herrup K (2012) Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 18(5):783–790. doi:10.1038/nm.2709 Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18(18):5099–5107. doi:10.1093/emboj/18.18.5099 Bolger TA, Yao TP (2005) Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. The Journal of neuroscience : the official journal of the Society for Neuroscience 25(41):9544–9553. doi:10.1523/JNEUROSCI.1826-05.2005 Takahashi-Fujigasaki J, Fujigasaki H (2006) Histone deacetylase (HDAC) 4 involvement in both Lewy and Marinesco bodies. Neuropathol Appl Neurobiol 32(5):562–566. doi:10.1111/j.1365-2990.2006.00733.x Lee VM, Trojanowski JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52(1):33–38. doi:10.1016/j.neuron.2006.09.026 Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312. doi:10.1038/ng.487 Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307. doi:10.1038/ng.485 Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306. doi:10.1038/81834 Tanner CM (2010) Advances in environmental epidemiology. Movement Disorders: Official Journal of the Movement Disorder Society 25(Suppl 1):S58–S62. doi:10.1002/mds.22721 Nieto M, Gil-Bea FJ, Dalfo E, Cuadrado M, Cabodevilla F, Sanchez B, Catena S, Sesma T et al (2006) Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 27(6):848–856. doi:10.1016/j.neurobiolaging.2005.04.010 Yu WH, Matsuoka Y, Sziraki I, Hashim A, Lafrancois J, Sershen H, Duff KE (2008) Increased dopaminergic neuron sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in transgenic mice expressing mutant A53T alpha-synuclein. Neurochem Res 33(5):902–911. doi:10.1007/s11064-007-9533-4 Norris EH, Uryu K, Leight S, Giasson BI, Trojanowski JQ, Lee VM (2007) Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model. Am J Pathol 170(2):658–666. doi:10.2353/ajpath.2007.060359 Lee M, Hyun D, Halliwell B, Jenner P (2001) Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J Neurochem 76(4):998–1009 Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K et al (2002) Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99(22):14524–14529. doi:10.1073/pnas.172514599 Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34(4):521–533 Feng L, Wang CY, Jiang H, Oho C, Mizuno K, Dugich-Djordjevic M, Lu B (1999) Differential effects of GDNF and BDNF on cultured ventral mesencephalic neurons. Brain Res Mol Brain Res 66(1–2):62–70 Garrido-Garcia A, Andres-Pans B, Duran-Trio L, Diez-Guerra FJ (2009) Activity-dependent translocation of neurogranin to neuronal nuclei. The Biochemical Journal 424(3):419–429. doi:10.1042/BJ20091071 Chawla S, Vanhoutte P, Arnold FJ, Huang CL, Bading H (2003) Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J Neurochem 85(1):151–159 Paroni G, Cernotta N, Dello Russo C, Gallinari P, Pallaoro M, Foti C, Talamo F, Orsatti L et al (2008) PP2A regulates HDAC4 nuclear import. Mol Biol Cell 19(2):655–667. doi:10.1091/mbc.E07-06-0623 Shimizu E, Nakatani T, He Z, Partridge NC (2014) Parathyroid hormone regulates histone deacetylase (HDAC) 4 through protein kinase A-mediated phosphorylation and dephosphorylation in osteoblastic cells. J Biol Chem 289(31):21340–21350. doi:10.1074/jbc.M114.550699 Cho Y, Sloutsky R, Naegle KM, Cavalli V (2013) Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155(4):894–908. doi:10.1016/j.cell.2013.10.004 Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) Alpha-synuclein shares physical and functional homology with 14-3-3 proteins. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 19(14):5782–5791 Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ (2007) Distribution of histone deacetylases 1-11 in the rat brain. Journal of Molecular Neuroscience: MN 31(1):47–58 Salian-Mehta S, Xu M, McKinsey TA, Tobet S, Wierman ME (2015) Novel interaction of class IIb histone deacetylase 6 (HDAC6) with class IIa HDAC9 controls gonadotropin releasing hormone (GnRH) neuronal cell survival and movement. J Biol Chem 290(22):14045–14056. doi:10.1074/jbc.M115.640482 Sen A, Nelson TJ, Alkon DL (2015) ApoE4 and Abeta oligomers reduce BDNF expression via HDAC nuclear translocation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 35(19):7538–7551. doi:10.1523/JNEUROSCI.0260-15.2015 Yang Y, Qin X, Liu S, Li J, Zhu X, Gao T, Wang X (2011) Peroxisome proliferator-activated receptor gamma is inhibited by histone deacetylase 4 in cortical neurons under oxidative stress. J Neurochem 118(3):429–439. doi:10.1111/j.1471-4159.2011.07316.x Mielcarek M, Landles C, Weiss A, Bradaia A, Seredenina T, Inuabasi L, Osborne GF, Wadel K et al (2013) HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol 11(11):e1001717. doi:10.1371/journal.pbio.1001717 Majdzadeh N, Wang L, Morrison BE, Bassel-Duby R, Olson EN, D’Mello SR (2008) HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Developmental Neurobiology 68(8):1076–1092. doi:10.1002/dneu.20637 Paroni G, Fontanini A, Cernotta N, Foti C, Gupta MP, Yang XJ, Fasino D, Brancolini C (2007) Dephosphorylation and caspase processing generate distinct nuclear pools of histone deacetylase 4. Mol Cell Biol 27(19):6718–6732. doi:10.1128/MCB.00853-07 Paroni G, Mizzau M, Henderson C, Del Sal G, Schneider C, Brancolini C (2004) Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell 15(6):2804–2818. doi:10.1091/mbc.E03-08-0624 Wetsel WC, Khan WA, Merchenthaler I, Rivera H, Halpern AE, Phung HM, Negro-Vilar A, Hannun YA (1992) Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol 117(1):121–133 Khan TK, Sen A, Hongpaisan J, Lim CS, Nelson TJ, Alkon DL (2015) PKCε deficits in Alzheimer’s disease brains and skin fibroblasts. J Alzheimers Dis 43(2):491–509 Hongpaisan J, Sun MK, Alkon DL (2011) PKC epsilon activation prevents synaptic loss, Abeta elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 31(2):630–643. doi:10.1523/jneurosci.5209-10.2011 Feng SJ, Li DG, Li Y, Yang X, Han S, Li JF (2013) Insight into hypoxic preconditioning and ischemic injury through determination of nPKC epsilon-interacting proteins in mouse brain. Neurochem Int 63(2):69–79. doi:10.1016/j.neuint.2013.04.011 Sun MK, Hongpaisan J, Nelson TJ, Alkon DL (2008) Poststroke neuronal rescue and synaptogenesis mediated in vivo by protein kinase C in adult brains. Proc Natl Acad Sci USA 105(36):13620–13625. doi:10.1073/pnas.0805952105 Fujita M, Sugama S, Nakai M, Takenouchi T, Wei J, Urano T, Inoue S, Hashimoto M (2007) Alpha-synuclein stimulates differentiation of osteosarcoma cells: relevance to down-regulation of proteasome activity. J Biol Chem 282(8):5736–5748. doi:10.1074/jbc.M606175200