Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dolmans, D., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003).
Bhaumik, J., Mittal, A. K., Banerjee, A., Chisti, Y. & Banerjee, U. C. Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 8, 1373–1394 (2015).
Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535–545 (2006).
Hou, L., Zhang, X., Pijper, T. C., Browne, W. R. & Feringa, B. L. Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches. J. Am. Chem. Soc. 136, 910–913 (2014).
Tian, J. et al. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J. Am. Chem. Soc. 135, 18850–18858 (2013).
Moore, C. M., Pendse, D. & Emberton, M. Photodynamic therapy for prostate cancer-a review of current status and future promise. Nat. Clin. Pract. Urol. 6, 18–30 (2009).
Tian, G., Zhang, X., Gu, Z. & Zhao, Y. Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv. Mat . 27, 7692–7712 (2015).
Ge, J. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 1–8 (2014).
Singh, S. et al. Glycosylated porphyrins, phthalocyanines and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 115, 10261–10306 (2015).
Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).
Ethirajan, M., Chen, Y., Joshi, P. & Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 40, 340–362 (2011).
Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mat . 10, 324–332 (2011).
Jin, C. S., Lovell, J. F., Chen, J. & Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7, 2541–2550 (2013).
Liu, K. et al. Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew. Chem. Int. Edit. 52, 8285–8289 (2013).
Liu, T.-F. et al. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area. J. Am. Chem. Soc. 137, 413–419 (2015).
Wilcox, O. T. et al. Acid loaded porphyrin-based metal-organic framework for ammonia uptake. Chem. Commun. 51, 14989–14991 (2015).
Ding, Y., Tang, Y., Zhu, W. & Xie, Y. Fluorescent and colorimetric ion probes based on conjugated oligopyrroles. Chem. Soc. Rev. 44, 1101–1112 (2015).
Chatterjee, D. K., Fong, L. S. & Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Delivery Rev . 60, 1627–1637 (2008).
Son, K. J. et al. Photosensitizing hollow nanocapsules for combination cancer therapy. Angew. Chem. Int. Edit. 50, 11968–11971 (2011).
Liang, X., Li, X., Yue, X. & Dai, Z. Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer. Angew. Chem. Int. Edit. 50, 11622–11627 (2011).
Balaban, T. S., Tamiaki, H. & Holzwarth, A. R. Chlorins programmed for self-assembly. Top. Curr. Chem. 258, 1–38 (2005).
Sengupta, S. & Wüerthner, F. Chlorophyll J-aggregates: From bioinspired dye stacks to nanotubes, liquid crystals and biosupramolecular electronics. Accounts Chem. Res. 46, 2498–2512, (2013).
Harvey, P. D. Reparameterized Herschbach-Laurie empirical relationships between metal-metal distances and force constants applied to homonuclear Bi- and polynuclear complexes (M = Cr, Mo, Rh, Pd, Ag, W, Re, Ir, Pt, Au, Hg). Coordin. Chem. Rev. 153, 175–198 (1996).
Lemon, C. M., Brothers, P. J. & Boitrel, B. Porphyrin complexes of the period 6 main group and late transition metals. Dalton T . 40, 6591–6609 (2011).
Preihs, C., Arambula, J. F., Lynch, V. M., Siddik, Z. H. & Sessler, J. L. Bismuth- and lead-texaphyrin complexes: towards potential alpha-core emitters for radiotherapy. Chem. Commun. 46, 7900–7902 (2010).
Huang, C. et al. Ordered nanosphere alignment of porphyrin for the improvement of nonlinear optical properties. Adv. Mat. 22, 3532-+ (2010).
Wang, Z. C., Medforth, C. J. & Shelnutt, J. A. Self-metallization of photocatalytic porphyrin nanotubes. J. Am. Chem. Soc. 126, 16720–16721 (2004).
Briand, G. G. & Burford, N. Bismuth compounds and preparations with biological or medicinal relevance. Chem. Rev. 99, 2601–2657 (1999).
Yang, N. & Sun, H. Biocoordination chemistry of bismuth: Recent advances. Coordin. Chem. Rev. 251, 2354–2366 (2007).
Ribo, J. M., Crusats, J., Farrera, J. A. & Valero, M. L. Aggregation in water solutions of tetrasodium diprotonated meso-tetrakis(4-sulfonatophenyl)porphyrin. J. Chem. Soc.-Chem. Commun . 681–682 (1994).
Ohno, O., Kaizu, Y. & Kobayashi, H. J-Aggregate formation of a water-soluble porphyrin in acidic aqueous-media. J. Chem. Phys. 99, 4128–4139 (1993).
Hasobe, T., Fukuzumi, S. & Kamat, P. V. Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes. J- and H-aggregates to nanorods. J. Am. Chem. Soc. 127, 11884–11885 (2005).
Gandini, S. C. M., Gelamo, E. L., Itri, R. & Tabak, M. Small angle X-ray scattering study of meso-tetrakis (4-sulfonatophenyl) porphyrin in aqueous solution: A self-aggregation model. Biophys. J. 85, 1259–1268 (2003).
Boitrel, B., Halime, Z., Balieu, S. & Lachkar, M. The coordination of bismuth by porphyrins. C. R. Chimi . 10, 583–589 (2007).
Maiti, N. C., Mazumdar, S. & Periasamy, N. J- and H-aggregates of porphyrin-surfactant complexes: Time-resolved fluorescence and other spectroscopic studies. J. Phys. Chem. B 102, 1528–1538 (1998).
Wilkinson, F., Helman, W. P. & Ross, A. B., Quantum yields for the photosensitized formation of the lowest electronically excited singlet-state of molecular-oxygen in solution. J. Phys. Chem. Ref. Dat . 22, 113–262 (1993).
Mosinger, J. & Mosinger, B. Photodynamic sensitizers assay: Rapid and sensitive iodometric measurement. Experientia 51, 106–109 (1995).