Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency

Scientific Reports - Tập 6 Số 1
Qiang Zhao1, Yao Wang2, Yanshuang Xu2, Yun Yan1, Jianbin Huang1
1Beijing National Laboratory for Molecular Sciences (BNLMS) (State Key Laboratory for Structural Chemistry of Unstable and Stable Species), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
2Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People’s Republic of China

Tóm tắt

Abstract

A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases.

Từ khóa


Tài liệu tham khảo

Dolmans, D., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003).

Bhaumik, J., Mittal, A. K., Banerjee, A., Chisti, Y. & Banerjee, U. C. Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 8, 1373–1394 (2015).

Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535–545 (2006).

Hou, L., Zhang, X., Pijper, T. C., Browne, W. R. & Feringa, B. L. Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches. J. Am. Chem. Soc. 136, 910–913 (2014).

Tian, J. et al. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J. Am. Chem. Soc. 135, 18850–18858 (2013).

Moore, C. M., Pendse, D. & Emberton, M. Photodynamic therapy for prostate cancer-a review of current status and future promise. Nat. Clin. Pract. Urol. 6, 18–30 (2009).

Tian, G., Zhang, X., Gu, Z. & Zhao, Y. Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv. Mat . 27, 7692–7712 (2015).

Ge, J. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 1–8 (2014).

Singh, S. et al. Glycosylated porphyrins, phthalocyanines and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 115, 10261–10306 (2015).

Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).

Ethirajan, M., Chen, Y., Joshi, P. & Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 40, 340–362 (2011).

Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mat . 10, 324–332 (2011).

Jin, C. S., Lovell, J. F., Chen, J. & Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7, 2541–2550 (2013).

Liu, K. et al. Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew. Chem. Int. Edit. 52, 8285–8289 (2013).

Liu, T.-F. et al. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area. J. Am. Chem. Soc. 137, 413–419 (2015).

Wilcox, O. T. et al. Acid loaded porphyrin-based metal-organic framework for ammonia uptake. Chem. Commun. 51, 14989–14991 (2015).

Ding, Y., Tang, Y., Zhu, W. & Xie, Y. Fluorescent and colorimetric ion probes based on conjugated oligopyrroles. Chem. Soc. Rev. 44, 1101–1112 (2015).

Chatterjee, D. K., Fong, L. S. & Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Delivery Rev . 60, 1627–1637 (2008).

Son, K. J. et al. Photosensitizing hollow nanocapsules for combination cancer therapy. Angew. Chem. Int. Edit. 50, 11968–11971 (2011).

Liang, X., Li, X., Yue, X. & Dai, Z. Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer. Angew. Chem. Int. Edit. 50, 11622–11627 (2011).

Balaban, T. S., Tamiaki, H. & Holzwarth, A. R. Chlorins programmed for self-assembly. Top. Curr. Chem. 258, 1–38 (2005).

Sengupta, S. & Wüerthner, F. Chlorophyll J-aggregates: From bioinspired dye stacks to nanotubes, liquid crystals and biosupramolecular electronics. Accounts Chem. Res. 46, 2498–2512, (2013).

Harvey, P. D. Reparameterized Herschbach-Laurie empirical relationships between metal-metal distances and force constants applied to homonuclear Bi- and polynuclear complexes (M = Cr, Mo, Rh, Pd, Ag, W, Re, Ir, Pt, Au, Hg). Coordin. Chem. Rev. 153, 175–198 (1996).

Lemon, C. M., Brothers, P. J. & Boitrel, B. Porphyrin complexes of the period 6 main group and late transition metals. Dalton T . 40, 6591–6609 (2011).

Preihs, C., Arambula, J. F., Lynch, V. M., Siddik, Z. H. & Sessler, J. L. Bismuth- and lead-texaphyrin complexes: towards potential alpha-core emitters for radiotherapy. Chem. Commun. 46, 7900–7902 (2010).

Huang, C. et al. Ordered nanosphere alignment of porphyrin for the improvement of nonlinear optical properties. Adv. Mat. 22, 3532-+ (2010).

Wang, Z. C., Medforth, C. J. & Shelnutt, J. A. Self-metallization of photocatalytic porphyrin nanotubes. J. Am. Chem. Soc. 126, 16720–16721 (2004).

Briand, G. G. & Burford, N. Bismuth compounds and preparations with biological or medicinal relevance. Chem. Rev. 99, 2601–2657 (1999).

Yang, N. & Sun, H. Biocoordination chemistry of bismuth: Recent advances. Coordin. Chem. Rev. 251, 2354–2366 (2007).

Ribo, J. M., Crusats, J., Farrera, J. A. & Valero, M. L. Aggregation in water solutions of tetrasodium diprotonated meso-tetrakis(4-sulfonatophenyl)porphyrin. J. Chem. Soc.-Chem. Commun . 681–682 (1994).

Ohno, O., Kaizu, Y. & Kobayashi, H. J-Aggregate formation of a water-soluble porphyrin in acidic aqueous-media. J. Chem. Phys. 99, 4128–4139 (1993).

Hasobe, T., Fukuzumi, S. & Kamat, P. V. Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes. J- and H-aggregates to nanorods. J. Am. Chem. Soc. 127, 11884–11885 (2005).

Schwab, A. D. et al. Porphyrin nanorods. J. Phys. Chem. B 107, 11339–11345 (2003).

Gandini, S. C. M., Gelamo, E. L., Itri, R. & Tabak, M. Small angle X-ray scattering study of meso-tetrakis (4-sulfonatophenyl) porphyrin in aqueous solution: A self-aggregation model. Biophys. J. 85, 1259–1268 (2003).

Boitrel, B., Halime, Z., Balieu, S. & Lachkar, M. The coordination of bismuth by porphyrins. C. R. Chimi . 10, 583–589 (2007).

Maiti, N. C., Mazumdar, S. & Periasamy, N. J- and H-aggregates of porphyrin-surfactant complexes: Time-resolved fluorescence and other spectroscopic studies. J. Phys. Chem. B 102, 1528–1538 (1998).

Wilkinson, F., Helman, W. P. & Ross, A. B., Quantum yields for the photosensitized formation of the lowest electronically excited singlet-state of molecular-oxygen in solution. J. Phys. Chem. Ref. Dat . 22, 113–262 (1993).

Mosinger, J. & Mosinger, B. Photodynamic sensitizers assay: Rapid and sensitive iodometric measurement. Experientia 51, 106–109 (1995).

Moan, J. & Wold, E. Detection of singlet oxygen production by ESR. Nature 279, 450–451 (1979).

Markovic, Z. et al. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 28, 5437–5448 (2007).