2005, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 52, 737, 10.1109/TUFFC.2005.1503961
2003, Adv. Mater., 15, 432, 10.1002/adma.200390100
2013, Adv. Mater., 25, 3371, 10.1002/adma.201300296
2012, Nano Lett., 12, 1959, 10.1021/nl204440g
2007, Adv. Mater., 19, 67, 10.1002/adma.200601162
2009, Adv. Mater., 21, 2185, 10.1002/adma.200803605
2011, Nanotechnology, 22, 465401, 10.1088/0957-4484/22/46/465401
2006, Nano Lett., 6, 2768, 10.1021/nl061802g
2010, Nano Today, 5, 540, 10.1016/j.nantod.2010.10.008
2014, Nanotechnology, 25, 135204, 10.1088/0957-4484/25/13/135204
2010, Nanotechnology, 21, 265502, 10.1088/0957-4484/21/26/265502
2011, J. Appl. Phys., 109, 031101, 10.1063/1.3533402
2015, Nano Energy, 14, 257, 10.1016/j.nanoen.2014.11.051
2014, Natl. Sci. Rev., 1, 62, 10.1093/nsr/nwt002
2018, ACS Nano, 12, 1811, 10.1021/acsnano.7b08618
2011, Phys. Rev. B, 84, 085211, 10.1103/PhysRevB.84.085211
2013, Nano Energy, 2, 1214, 10.1016/j.nanoen.2013.05.005
2015, Nano Energy, 14, 382, 10.1016/j.nanoen.2014.11.046
1988, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 35, 146, 10.1109/58.4164
2005, Int. J. Appl. Electromagn. Mech., 22, 97, 10.3233/JAE-2005-694
1973, Acoustic Fields and Waves in Solids
1988, Semiconductor Fundamentals, 2nd ed
2017, Smart Mater. Struct., 26, 025030, 10.1088/1361-665X/aa542e
2003, J. Appl. Phys., 94, 3984, 10.1063/1.1603953
2003, J. Appl. Phys., 94, 6566, 10.1063/1.1620378
1997, Int. J. Eng. Sci., 35, 1387, 10.1016/S0020-7225(97)00060-8
2015, Smart Mater. Struct., 24, 025021, 10.1088/0964-1726/24/2/025021
2014, Sci. Rep., 4, 5617, 10.1038/srep05617
2008, J. Acoust. Soc. Am., 123, 3694, 10.1121/1.2935083
2015, Philos. Mag. Lett., 95, 92, 10.1080/09500839.2015.1011249
2010, Int. J. Solids Struct., 47, 816, 10.1016/j.ijsolstr.2009.11.016
2011, World J. Mech., 1, 247, 10.4236/wjm.2011.15031
2006, Arch. Appl. Mech., 76, 381, 10.1007/s00419-006-0035-7
2005, Int. J. Fract., 136, L27, 10.1007/s10704-006-6943-2
2007, Int. J. Solids Struct., 44, 3928, 10.1016/j.ijsolstr.2006.10.033
2014, Comput. Model. Eng. Sci., 99, 273
2014, Eng. Fract. Mech., 126, 27, 10.1016/j.engfracmech.2014.05.011
2016, Int. J. Solids Struct., 94, 50, 10.1016/j.ijsolstr.2016.05.009
2016, Eng. Fract. Mech., 165, 183, 10.1016/j.engfracmech.2016.02.057
2016, Eng. Anal. Boundary Elem., 67, 115, 10.1016/j.enganabound.2016.03.005
2016, J. Zhejiang Univ. Sci. A, 17, 37, 10.1631/jzus.A1500213
2016, AIP Adv., 6, 045301, 10.1063/1.4945752
2017, MRS Adv., 2, 3421, 10.1557/adv.2017.301
2012, Adv. Mater., 24, 4719, 10.1002/adma.201104588
2007, Nano Lett., 7, 2499, 10.1021/nl071310j
2009, Nano Lett., 9, 1103, 10.1021/nl803547f
2017, Nano Energy, 40, 82, 10.1016/j.nanoen.2017.07.049
2018, Bending of a cantilever piezoelectric semiconductor fiber under an end force, Generalized Models and Non-Classical Approaches in Complex Materials 2, 261
2018, Nano Energy, 43, 22, 10.1016/j.nanoen.2017.11.002
2017, J. Appl. Phys., 122, 204502, 10.1063/1.4996754
2018, J. Mech. Mater. Struct., 13, 103, 10.2140/jomms.2018.13.103
2018, J. Appl. Phys., 123, 025709, 10.1063/1.5009485
2006, J. Sound Vib., 292, 626, 10.1016/j.jsv.2005.08.004
2006, Physics of Semiconductor Devices, 3rd ed