Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors

Journal of Applied Physics - Tập 124 Số 6 - 2018
Ruoran Cheng1, Chunli Zhang1, Weiqiu Chen1, Jiashi Yang1,2
1Department of Engineering Mechanics, Zhejiang University 1 , Hangzhou, Zhejiang 310027, China
2Department of Mechanical and Materials Engineering, The University of Nebraska-Lincoln 2 , Lincoln, Nebraska 68588-0526, USA

Tóm tắt

We study the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. A theoretical analysis is performed using a one-dimensional model. It is shown that mechanical loads cause redistribution of mobile charges in such a composite fiber. Thus, the composite fiber exhibits piezotronic couplings like a homogeneous piezoelectric semiconducting fiber. The couplings are a product property of the composite, enabling the design of piezotronics devices beyond materials with direct piezotronics couplings. The basic behavior of the composite fiber and the effects of various parameters on piezotronic couplings are calculated and examined. It is observed that piezotronic couplings in these fibers are sensitive to material and geometric parameters and can be optimized through design.

Từ khóa


Tài liệu tham khảo

2005, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 52, 737, 10.1109/TUFFC.2005.1503961

2003, Adv. Mater., 15, 432, 10.1002/adma.200390100

2013, Adv. Mater., 25, 3371, 10.1002/adma.201300296

2012, Nano Lett., 12, 1959, 10.1021/nl204440g

2007, Adv. Mater., 19, 67, 10.1002/adma.200601162

2009, Adv. Mater., 21, 2185, 10.1002/adma.200803605

2011, Nanotechnology, 22, 465401, 10.1088/0957-4484/22/46/465401

2006, Nano Lett., 6, 2768, 10.1021/nl061802g

2010, Nano Today, 5, 540, 10.1016/j.nantod.2010.10.008

2014, Nanotechnology, 25, 135204, 10.1088/0957-4484/25/13/135204

2010, Nanotechnology, 21, 265502, 10.1088/0957-4484/21/26/265502

2011, J. Appl. Phys., 109, 031101, 10.1063/1.3533402

2015, Nano Energy, 14, 257, 10.1016/j.nanoen.2014.11.051

2014, Natl. Sci. Rev., 1, 62, 10.1093/nsr/nwt002

2018, ACS Nano, 12, 1811, 10.1021/acsnano.7b08618

2011, Phys. Rev. B, 84, 085211, 10.1103/PhysRevB.84.085211

2013, Nano Energy, 2, 1214, 10.1016/j.nanoen.2013.05.005

2015, Nano Energy, 14, 382, 10.1016/j.nanoen.2014.11.046

1988, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 35, 146, 10.1109/58.4164

2005, Int. J. Appl. Electromagn. Mech., 22, 97, 10.3233/JAE-2005-694

1973, Acoustic Fields and Waves in Solids

1988, Semiconductor Fundamentals, 2nd ed

2017, Smart Mater. Struct., 26, 025030, 10.1088/1361-665X/aa542e

2003, J. Appl. Phys., 94, 3984, 10.1063/1.1603953

2003, J. Appl. Phys., 94, 6566, 10.1063/1.1620378

1997, Int. J. Eng. Sci., 35, 1387, 10.1016/S0020-7225(97)00060-8

2015, Smart Mater. Struct., 24, 025021, 10.1088/0964-1726/24/2/025021

2014, Sci. Rep., 4, 5617, 10.1038/srep05617

2008, J. Acoust. Soc. Am., 123, 3694, 10.1121/1.2935083

2015, Philos. Mag. Lett., 95, 92, 10.1080/09500839.2015.1011249

2010, Int. J. Solids Struct., 47, 816, 10.1016/j.ijsolstr.2009.11.016

2011, World J. Mech., 1, 247, 10.4236/wjm.2011.15031

2014, 106

2006, Arch. Appl. Mech., 76, 381, 10.1007/s00419-006-0035-7

2005, Int. J. Fract., 136, L27, 10.1007/s10704-006-6943-2

2007, Int. J. Solids Struct., 44, 3928, 10.1016/j.ijsolstr.2006.10.033

2014, Comput. Model. Eng. Sci., 99, 273

2014, Eng. Fract. Mech., 126, 27, 10.1016/j.engfracmech.2014.05.011

2016, Int. J. Solids Struct., 94, 50, 10.1016/j.ijsolstr.2016.05.009

2016, Eng. Fract. Mech., 165, 183, 10.1016/j.engfracmech.2016.02.057

2016, Eng. Anal. Boundary Elem., 67, 115, 10.1016/j.enganabound.2016.03.005

2016, J. Zhejiang Univ. Sci. A, 17, 37, 10.1631/jzus.A1500213

2016, AIP Adv., 6, 045301, 10.1063/1.4945752

2017, MRS Adv., 2, 3421, 10.1557/adv.2017.301

2012, Adv. Mater., 24, 4719, 10.1002/adma.201104588

2007, Nano Lett., 7, 2499, 10.1021/nl071310j

2009, Nano Lett., 9, 1103, 10.1021/nl803547f

2017, Nano Energy, 40, 82, 10.1016/j.nanoen.2017.07.049

2018, Bending of a cantilever piezoelectric semiconductor fiber under an end force, Generalized Models and Non-Classical Approaches in Complex Materials 2, 261

2018, Nano Energy, 43, 22, 10.1016/j.nanoen.2017.11.002

2017, J. Appl. Phys., 122, 204502, 10.1063/1.4996754

2018, J. Mech. Mater. Struct., 13, 103, 10.2140/jomms.2018.13.103

2018, J. Appl. Phys., 123, 025709, 10.1063/1.5009485

2006, J. Sound Vib., 292, 626, 10.1016/j.jsv.2005.08.004

2006, Physics of Semiconductor Devices, 3rd ed