<i>Ab initio</i> effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg

Journal of Chemical Physics - Tập 82 Số 1 - Trang 270-283 - 1985
P. Jeffrey Hay1, Willard R. Wadt1
1Theoretical Division, MS J569, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Tóm tắt

Ab initio effective core potentials (ECP’s) have been generated to replace the Coulomb, exchange, and core-orthogonality effects of the chemically inert core electron in the transition metal atoms Sc to Hg. For the second and third transition series relative ECP’s have been generated which also incorporate the mass–velocity and Darwin relativistic effects into the potential. The ab initio ECP’s should facilitate valence electron calculations on molecules containing transition-metal atoms with accuracies approaching all-electron calculations at a fraction of the computational cost. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3d,4s,4p), (4d,5s,5p), and (5d,6s,6p) orbitals of the first, second, and third transition series atoms, respectively. All-electron and valence-electron atomic excitation energies are also compared for the low-lying states of Sc–Hg, and the valence-electron calculations are found to reproduce the all-electron excitation energies (typically within a few tenths of an eV).

Từ khóa


Tài liệu tham khảo

1982, J. Chem. Phys., 76, 735, 10.1063/1.442680

1974, Chem. Phys. Lett., 29, 534, 10.1016/0009-2614(74)85085-2

1976, J. Chem. Phys., 65, 3826, 10.1063/1.432900

1978, J. Chem. Phys., 68, 2864

1979, J. Chem. Phys., 70, 3008, 10.1063/1.437839

1974, J. Chem. Phys., 60, 2779, 10.1063/1.1681443

1975, J. Chem. Phys., 62, 1507, 10.1063/1.430613

1976, J. Chem. Phys., 64, 956, 10.1063/1.432289

1977, Mol. Phys., 33, 159, 10.1080/00268977700103141

1981, J. Phys. Chem., 85, 1662, 10.1021/j150612a012

1977, J. Chem. Phys., 67, 5871

1978, J. Chem. Phys., 69, 976, 10.1063/1.436650

1978, J. Chem. Phys., 68, 2368

1978, J. Chem. Phys., 69, 984, 10.1063/1.436651

1978, J. Phys. B, 11, 217, 10.1088/0022-3700/11/2/007

1978, Chem. Phys. Lett., 57, 83, 10.1016/0009-2614(78)80356-X

1982, Phys. Rev. B, 26, 4199, 10.1103/PhysRevB.26.4199

1981, J. Comput. Phys., 44, 289, 10.1016/0021-9991(81)90053-X

1985, J. Chem. Phys., 82, 284, 10.1063/1.448800

1979, J. Chem. Phys., 71, 4445, 10.1063/1.438197

1979, Phys. Rev. Lett., 43, 1494, 10.1103/PhysRevLett.43.1494

1976, J. Opt. Soc. Am., 66, 1010, 10.1364/JOSA.66.001010

1981, Chem. Phys. Lett., 81, 70, 10.1016/0009-2614(81)85329-8

1982, Chem. Phys. Lett., 86, 320, 10.1016/0009-2614(82)80214-5

1982, J. Chem. Phys., 76, 3834, 10.1063/1.443428

1978, J. Chem. Phys., 71, 2955

1982, Chem. Phys. Lett., 89, 245, 10.1016/0009-2614(82)80050-X

1981, J. Chem. Phys., 75, 4539, 10.1063/1.442621

1981, J. Phys. Chem., 85, 2607, 10.1021/j150618a007

1984, J. Chem. Phys., 82, 299

1970, J. Chem. Phys., 52, 1033, 10.1063/1.1673095

1977, J. Chem. Phys., 66, 4377, 10.1063/1.433731