Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures

Planta - Tập 246 - Trang 19-32 - 2017
Pedro Joaquín Sánchez-Pujante1, María Borja-Martínez1, María Ángeles Pedreño1, Lorena Almagro1
1Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain

Tóm tắt

Glucosinolates are biologically active compounds which are involved in plant defense reaction. The use of plant in vitro cultures and genetic engineering is a promising strategy for their sustainable production. Glucosinolates are a class of secondary metabolites found mainly in Brassicaceae, which contain nitrogen and sulfur in their structures. Glucosinolates are divided into three groups depending on the amino acid from which they are biosynthesized. Aliphatic glucosinolates are generally derived from leucine, valine, methionine, isoleucine and alanine while indole and aromatic glucosinolates are derived from tryptophan and phenylalanine or tyrosine, respectively. These compounds are hydrolyzed by the enzyme myrosinase when plants are stressed by biotic and abiotic factors, obtaining different degradation products. Glucosinolates and their hydrolysis products play an important role in plant defense responses against different types of stresses. In addition, these compounds have beneficial effect on human health because they are strong antioxidants and they have potent cardiovascular, antidiabetic, antimicrobial and antitumoral activities. Due to all the properties described above, the demand for glucosinolates and their hydrolysis products has enormously increased, and therefore, new strategies that allow the production of these compounds to be improved are needed. The use of plant in vitro cultures is emerging as a biotechnological strategy to obtain glucosinolates and their derivatives. This work is focused on the biosynthesis of glucosinolates and the bioactivity of these compounds in plants. In addition, a detailed study on the strategies used to increase the production of several glucosinolates, in particular those synthesized in Brassicaceae, using in vitro plant cultures has been made. Special attention has been paid for increasing the production of glucosinolates and their derivatives using metabolic engineering.

Tài liệu tham khảo

Aires A, Mota VR, Saavedra MJ, Monteiro AA, Simoes M, Rosa EAS, Bennett RN (2009) Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J Appl Microbiol 106(6):2096–2105. doi:10.1111/j.1365-2672.2009.04181.x Almagro L, Gutierrez J, Pedreño MA, Sottomayor M (2014) Synergistic and additive influence of cyclodextrins and methyl jasmonate on the expression of the terpenoid indole alkaloid pathway genes and metabolites in Catharanthus roseus cell cultures. Plant Cell Tiss Org 119(3):543–551. doi:10.1007/s11240-014-0554-9 Alvarez S, He Y, Chen S (2008) Comparative investigations of the glucosinolate–myrosinase system in Arabidopsis suspension cells and hypocotyls. Plant Cell Physiol 49(3):324–333. doi:10.1093/pcp/pcn007 Andréasson E, Jørgensen LB (2003) Localization of plant myrosinases and glucosinolates. In: Romeo JT (ed) Integr Elsevier, Phytochem Ethnobot Mol Ecol pp 79–99 Armah CN, Derdemezis C, Traka MH, Dainty JR, Doleman JF, Saha S, Leung W, Potter JF, Lovegrove JA, Mithen RF (2015) Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: evidence from randomised controlled trials. Mol Nutr Food Res 59(5):918–926. doi:10.1002/mnfr.201400863 Augustine R, Bisht NC (2015) Biotic elicitors and mechanical damage modulate glucosinolate accumulation by co-ordinated interplay of glucosinolate biosynthesis regulators in polyploid Brassica juncea. Phytochemistry 117:43–50. doi:10.1016/j.phytochem.2015.05.015 Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli GF, Iori R, Valgimigli L (2005a) Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J Agr Food Chem 53(7):2475–2482. doi:10.1021/jf047945a Barillari J, Cervellati R, Paolini M, Tatibouët A, Rollin P, Iori R (2005b) Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (Kaiware Daikon) and its redox properties. J Agr Food Chem 53(26):9890–9896. doi:10.1021/jf051465h Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67(11):1053–1067. doi:10.1016/j.phytochem.2006.02.024 Borges A, Abreu AC, Ferreira C, Saavedra MJ, Simões LC, Simões M (2015) Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. J Food Sci Technol 52(8):4737–4748. doi:10.1007/s13197-014-1533-1 Brader G, Tas É, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogenerwinia carotovora. Plant Physiol 126(2):849–860. doi:10.1104/pp.126.2.849 Brown KK, Hampton MB (2011) Biological targets of isothiocyanates. BBA-Gen Subjects 1810(9):888–894. doi:10.1016/j.bbagen.2011.06.004 Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481. doi:10.1016/S0031-9422(02)00549-6 Bulgakov VP, Veremeichik GN, Grigorchuk VP, Rybin VG, Shkryl YN (2016) The rolB gene activates secondary metabolism in Arabidopsis calli via selective activation of genes encoding MYB and bHLH transcription factors. Plant Physiol Bioch 102:70–79. doi:10.1016/j.plaphy.2016.02.015 Calmes B, N’Guyen G, Dumur J, Brisach CA, Campion C, Iacomi B, Pigné S, Dias E, Macherel D, Guillemette T, Simoneau P (2015) Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. Frontiers in Plant Science 6:414. doi:10.3389/fpls.2015.00414 Cartea González ME, Francisco Candeira M, Abilleira Ambroa R, Velasco Pazos P (2008) Los glucosinolatos como factor de calidad en las brásicas: degradación desde el campo hasta la mesa. Horticultura 209:54–61 Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137(1):253–262. doi:10.1104/pp.104.054395 Champolivier L, Merrien A (1996) Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. Eur J Agron 5(3):153–160. doi:10.1016/S1161-0301(96)02004-7 Chung IM, Rekha K, Rajakumar G, Thiruvengadam M (2016) Production of glucosinolates, phenolic compounds and associated gene expression profiles of hairy root cultures in turnip (Brassica rapa ssp. rapa). 3. Biotech 6(2):175. doi:10.1007/s13205-016-0492-9 Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18(6):337–347. doi:10.1016/j.molmed.2012.04.003 Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52(S1):S128–S138. doi:10.1002/mnfr.200700195 Du L, Halkier BA (1996) Isolation of a microsomal enzyme system involved in glucosinolate biosynthesis from seedlings of Tropaeolum majus L. Plant Physiol 111(3):831–837. doi:10.1104/pp.111.3.831 Dufour V, Stahl M, Baysse C (2015) The antibacterial properties of isothiocyanates. Microbiology 161(2):229–243. doi:10.1099/mic.0.082362-0 Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay P, Lozniewski A (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo [a] pyrene-induced stomach tumors. P Natl Acad Sci USA 99(11):7610–7615. doi:10.1073/pnas.112203099 Frerigmann H, Gigolashvili T (2014) MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant 7(5):814–828. doi:10.1093/mp/ssu004 Fuentes F, Paredes-Gonzalez X, Kong ANT (2015) Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3, 3′-diindolylmethane: Antioxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Reports 1(3):179–196. doi:10.1007/s40495-015-0017-y Furuya AKM, Sharifi HJ, Jellinger RM, Cristofano P, Shi B, de Noronha CM (2016) Sulforaphane inhibits HIV infection of macrophages through Nrf2. PLoS Pathog 12(4):e1005581. doi:10.1371/journal.ppat.1005581 Gigolashvili T, Berger B, Mock HP, Müller C, Weisshaar B, Flügge UI (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50(5):886–901. doi:10.1111/j.1365-313X.2007.03099.x Gigolashvili T, Berger B, Flügge UI (2009) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem Rev 8(1):3–13. doi:10.1007/s11101-008-9112-6 Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333. doi:10.1146/annurev.arplant.57.032905.105228 Hara M, Harazaki A, Tabata K (2013) Administration of isothiocyanates enhances heat tolerance in Arabidopsis thaliana. Plant Growth Regul 69(1):71–77. doi:10.1007/s10725-012-9748-5 Haristoy X, Angioi-Duprez K, Duprez A, Lozniewski A (2003) Efficacy of sulforaphane in eradicating Helicobacter pylori in human gastric xenografts implanted in nude mice. Antimicrob Agents Ch 47(12):3982–3984. doi:10.1128/AAC.47.12.3982-3984.2003 Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. P Natl Acad Sci USA 104(15):6478–6483. doi:10.1073/pnas.0611629104 Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Sci 64(1):48. doi:10.1270/jsbbs.64.48 Jang M, Hong E, Kim GH (2010) Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables. J Food Sci 75(7):M412–M416. doi:10.1111/j.1750-3841.2010.01725.x Jensen CR, Mogensen VO, Mortensen G, Fieldsend JK, Milford GFJ, Andersen MN, Thage JH (1996) Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crop Res 47(2):93–105 Kastell A, Smetanska I, Ulrichs C, Cai Z, Mewis I (2013a) Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa. Appl Biochem Biotech 169(2):624–635. doi:10.1007/s12010-012-0017-x Kastell A, Smetanska I, Schreiner M, Mewis I (2013b) Hairy roots, callus, and mature plants of Arabidopsis thaliana exhibit distinct glucosinolate and gene expression profiles. Plant Cell Tiss Org 115(1):45–54. doi:10.1007/s11240-013-0338-7 Kastell A, Zrenner R, Schreiner M, Kroh L, Ulrichs C, Smetanska I, Mewis I (2015) Metabolic engineering of aliphatic glucosinolates in hairy root cultures of Arabidopsis thaliana. Plant Mol Biol Rep 33(3):598–608. doi:10.1007/s11105-014-0781-6 Kaufman-Szymczyk A, Majewski G, Lubecka-Pietruszewska K, Fabianowska-Majewska K (2015) The role of sulforaphane in epigenetic mechanisms, including interdependence between histone modification and DNA methylation. Int J Mol Sci 16(12):29732–29743. doi:10.3390/ijms161226195 Khokon M, Jahan MS, Rahman T, Hossain MA, Muroyama D, Minami I, Munemasa S, Mori IC, Nakamura Y, Murata Y (2011) Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. Plant Cell Environ 34(11):1900–1906. doi:10.1111/j.1365-3040.2011.02385.x Kim SJ, Park WT, Uddin MR, Kim YB, Nam SY, Jho KH, Park SU (2013) Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. Italica). Nat Prod Commun 8(2):217–220 Kliebenstein D, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161(1):325–332 Kumar P, Srivastava DK (2016) Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. Italica), an important vegetable crop. Biotechnol Lett 38(4):561–571. doi:10.1007/s10529-015-2031-x Kumar G, Tuli HS, Mittal S, Shandilya JK, Tiwari A, Sandhu SS (2015) Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumor Biol 36(6):4005–4016. doi:10.1007/s13277-015-3391-5 LeCoz CJ, Ducombs G (2006) Plants and plant products. In: Frosch PJ, Menne T, Lepottevin JP (eds) Contact Dermatitis, 4th edn. Springer Verlag, Berlin-Heidelberg, pp 751–800 Levy M, Wang Q, Kaspi R, Parrella MP, Abel S (2005) Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J 43(1):79–96. doi:10.1111/j.1365-313X.2005.02435.x Liu T, Zhang X, Yang H, Agerbirk N, Qiu Y, Wang H, Shen D, Song J, Li X (2016) Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella infestation. Front Plant Sci 7:83. doi:10.3389/fpls.2016.00083 López-Berenguer C, Martínez-Ballesta MC, García-Viguera C, Carvajal M (2008) Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci 174(3):321–328. doi:10.1016/j.plantsci.2007.11.012 Ludwig-Müller J, Krishna P, Forreiter C (2000) A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress. Plant Physiol 123(3):949–958 Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni A (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 148(4):2021–2049. doi:10.1104/pp.108.124784 Manici LM, Lazzeri L, Palmieri S (1997) In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J Agric Food Chem 45(7):2768–2773. doi:10.1021/jf9608635 Martínez-Ballesta MC, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14(6):11607–11625. doi:10.3390/ijms140611607 Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138(2):1149–1162. doi:10.1104/pp.104.053389 Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131(1):298–308. doi:10.1104/pp.011015 Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agr 80(7):967–984 Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450. doi:10.1146/annurev-arplant-042110-103854 Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Org 118(1):1–16. doi:10.1007/s11240-014-0467-7 Niimi H, Watanabe M, Serizawa H, Koba T, Nakamura I, Mii M (2015) Amiprophosmethyl-induced efficient in vitro production of polyploids in raphanobrassica with the aid of aminoethoxyvinylglycine (AVG) in the culture medium. Breed Sci 65(5):396–402. doi:10.1270/jsbbs.65.396 Padilla G, Cartea ME, Velasco P, de Haro A, Ordás A (2007) Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68(4):536–545. doi:10.1016/j.phytochem.2006.11.017 Pang Q, Guo J, Chen S, Chen Y, Zhang L, Fei M, Jin S, Li M, Wang Y, Yan X (2012) Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant Soil 355(1–2):363–374. doi:10.1007/s11104-011-1108-0 Park NI, Kim JK, Park WT, Cho JW, Lim YP, Park SU (2011) An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes. Mol Biol Rep 38(8):4947–4953. doi:10.1007/s11033-010-0638-5 Radovich TJ, Kleinhenz MD, Streeter JG (2005) Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J Am Soc Hortic Sci 130(6):943–949 Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21(2):182. doi:10.3390/molecules21020182 Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153 Robin AHK, Yi GE, Laila R, Yang K, Park JI, Kim HR, Nou IS (2016) Expression profiling of glucosinolate biosynthetic genes in Brassica oleracea L. var. capitata inbred lines reveals their association with glucosinolate content. Molecules 21(6):787. doi:10.3390/molecules21060787 Senanayake GV, Banigesh A, Wu L, Lee P, Juurlink BH (2012) The dietary phase 2 protein inducer sulforaphane can normalize the kidney epigenome and improve blood pressure in hypertensive rats. Am J Hypertens 25(2):229–235. doi:10.1038/ajh.2011.200 Shroff R, Vergara F, Muck A, Svatoš A, Gershenzon J (2008) Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. P Natl Acad Sci USA 105(16):6196–6201. doi:10.1073/pnas.0711730105 Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I (2006) DOF transcription factor AtDof1. 1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J 47(1):10–24. doi:10.1111/j.1365-313X.2006.02767.x Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ (2007) A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS One 2(12):e1322. doi:10.1371/journal.pone.0001322 Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates–gene discovery and beyond. Trends Plant Sci 15(5):283–290. doi:10.1016/j.tplants.2010.02.005 Songsak T, Lockwood GB (2004) Production of two volatile glucosinolate hydrolysis compounds in Nasturtium montanum and Cleome chelidonii plant cell cultures. Fitoterapia 75(3):296–301. doi:10.1016/j.fitote.2004.01.007 Sotelo T, Lema M, Soengas P, Cartea ME, Velasco P (2015) In vitro activity of glucosinolates and their degradation products against Brassica-pathogenic bacteria and fungi. Appl Environ Microb 81(1):432–440. doi:10.1128/AEM.03142-14 Sotelo T, Velasco P, Soengas P, Rodríguez VM, Cartea ME (2016) Modification of leaf glucosinolate contents in Brassica oleracea by divergent selection and effect on expression of genes controlling glucosinolate pathway. Front Plant Sci 7:1012. doi:10.3389/fpls.2016.01012 Steindal ALH, Rødven R, Hansen E, Mølmann J (2015) Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale. Food Chem 174:44–51. doi:10.1016/j.foodchem.2014.10.129 Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y (2011) Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J 67(1):81–93. doi:10.1111/j.1365-313X.2011.04578.x Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131(11):3027S–3033S Tassoni A, Fornalè S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166(3):895–905. doi:10.1111/j.1469-8137.2005.01383.x Textor S, Gershenzon J (2009) Herbivore induction of the glucosinolate–myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Rev 8(1):149–170. doi:10.1007/s11101-008-9117-1 Tumer TB, Rojas-Silva P, Poulev A, Raskin I, Waterman C (2015) Direct and indirect antioxidant activity of polyphenol-and isothiocyanate-enriched fractions from Moringa oleifera. J Agr Food Chem 63(5):1505–1513. doi:10.1021/jf505014n Vergara F, Svatoš A, Schneider B, Reichelt M, Gershenzon J, Wittstock U (2006) Glycine conjugates in a lepidopteran insect herbivore—the metabolism of benzylglucosinolate in the cabbage white butterfly. Pieris rapae. ChemBioChem 7(12):1982–1989. doi:10.1002/cbic.200600280 Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates: a review. LWT-Food Sci Technol 42(10):1561–1572. doi:10.1016/j.lwt.2009.05.023 Wielanek M, Urbanek H (1999) Glucotropaeolin and myrosinase production in hairy root cultures of Tropaeolum majus. Plant Cell Tiss Org 57(1):39–45. doi:10.1023/A:1006398902248 Wittstock U, Burow M (2010) Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. Arabidopsis Book 8:e0134. doi:10.1199/tab.0134 Wu L, Ashraf MHN, Facci M, Wang R, Paterson PG, Ferrie A, Juurlink BH (2004) Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. P Natl Acad Sci USA 101(18):7094–7099. doi:10.1073/pnas.0402004101 Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121(4):1014–1019. doi:10.1016/j.foodchem.2010.01.040 Zaheer M, Giri CC (2016) Enhanced diterpene lactone (andrographolide) production from elicited adventitious root cultures of Andrographis paniculata. Res Chem Intermed. doi:10.1007/s11164-016-2771-9 Zang YX, Lim MH, Park BS, Hong SB, Kim DH (2008a) Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Mol Cells 25(2):231–241 Zang YX, Kim JH, Park YD, Kim DH, Hong SB (2008b) Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. BMB Reports 41(6):472–478 Zang YX, Kim DH, Park BS, Hong SB (2009) Metabolic engineering of indole glucosinolates in Chinese cabbage hairy roots expressing Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Biotechnol Bioproc E 14(4):467–473. doi:10.1007/s12257-008-0294-y Zang YX, Ge JL, Huang LH, Gao F, Lv XS, Zheng WW, Hong SB, Zhu ZJ (2015) Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation. J Zhejiang Univ Sci B 16(8):696–708